×
10.09.2013
216.012.6784

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ УСТОЙЧИВЫХ ФОРМ ЖЕЛЕЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области водоснабжения и может быть использовано в системах водоподготовки для улучшения качества питьевой воды. Способ очистки подземных вод от устойчивых форм железа включает регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных значений. В подлежащую очистке воду вводят углекислый газ перед центробежным насосом и снижают pH раствора до значения 4-5. Создают разрежение над поверхностью обработанной воды. Углекислый газ используют многократно путем откачивания после декарбонизации. Технический результат заключается в повышении эффективности и экологичности процесса очистки подземных вод от устойчивых форм коллоидного железа. 2 ил., 1 табл., 6 пр.
Основные результаты: Способ очистки подземных вод от устойчивых форм железа, включающий регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных значений, отличающийся тем, что углекислый газ вводят в подлежащую очистке воду перед центробежным насосом, снижают pH раствора до значения 4-5, создают разрежение над поверхностью обработанной воды, углекислый газ используют многократно путем откачивания после декарбонизации.

Изобретение относится к области водоснабжения, в частности к очистке подземных вод, содержащих устойчивые формы железа в виде железоорганических соединений, и может быть использовано в системах водоподготовки для улучшения качества питьевой воды.

Подземные воды кроме железа содержат растворенные органические вещества, способствующие образованию устойчивых форм железа в виде устойчивых колодных соединений. Применяемые в настоящее время схемы очистки, включающие аэрацию, отстаивание и фильтрование для воды, содержащей железо и органические вещества, не достаточно эффективны, по следующим причинам. Окисление железа на стадии аэрирования приводит к образованию Fe(OH)3. Растворенные органические вещества в виде гумусовых соединений, образуют на поверхности Fe(OH)3 защитный слой, препятствующий коагуляции окисленного железа и выпадению осадка. Образующиеся железоорганические соединения в виде коллоидных частиц устойчивы в течение длительного времени. На стадии фильтрования, железо в виде устойчивых коллоидных частиц не задерживается на фильтрах, так как их размер находиться в диапазоне от 50 до 450 нм. Единственный способ удаления коллоидного железа на стадии фильтрования - это использование ультра- и нанофильтрационных мембран, что приводит к увлечению стоимости технологии водоподготовки.

Известен способ очистки подземных вод от устойчивых форм железа, заключающийся в аэрирование исходной воды и деструкции железоорганических комплексных соединений в рабочей зоне биореактора за счет метаболизма железоокисляющих микроорганизмов с последующим фильтрованием. [RU 2161594, публ. 10.01.2001]

Недостатками известного способа являются:

- ограниченная область применения для территорий северных регионов России ввиду низких температур;

- высокие эксплуатационные затраты, связанные с условиями содержания железобактерий для обеспечения температурного режима, стабильности химического состава воды, поступающей в биореактор для строгого соблюдения технологического режима очистки;

- затраты на обезвреживание и утилизацию избыточного ила, который образуется при биоочистке.

Наиболее близким к заявляемому способу является способ очистки воды от гумусовых веществ и железа [RU 2158231, публ. 27.10.2000 г.], заключающийся в последовательном пропускании ее в две стадии через фильтрующую загрузку с регулированием pH очищаемой воды на каждой стадии, согласно чему на первую стадию фильтрации подают воду с pH 3,0-4,0 для извлечения гумусовых веществ, а на вторую стадию фильтрации подают воду с pH 6,5-9,0 для извлечения железа. При этом установление pH очищаемой воды осуществляют добавлением кислоты перед первой стадией фильтрации и щелочи перед второй стадией фильтрации. Или установление pH очищаемой воды осуществляют пропусканием воды через анодную камеру электролизера перед первой стадией фильтрации и через катодную камеру электролизера перед второй стадией фильтрации

Недостатком прототипа является то, что для регулирования pH очищаемой воды используют реагенты (кислоты и щелочи), что требует дополнительного оборудования для подачи кислоты и щелочи, причем это оборудование должно быть коррозиционностойким. Кроме того, в настоящее время для очистки воды в питьевых целях наиболее приоритетными являются безреагентные системы, как экологически безопасные, а применение кислот и щелочей, нельзя отнести к экологически безопасным процессам обработки. А использование электролизера для корректировки pH является энергозатратным и сложным в эксплуатации процессом, особенно в удаленных поселках, не имеющих централизованного водоснабжения и при работе любого электролизера с природными водами, содержащими соли жесткости, железа и кремния, даже на переменном токе, происходит постепенная кольматация электродов и резкое снижение эффективности работы установки.

Задача изобретения - создание экологически чистого, эффективного и простого в обслуживании способа очистки подземных вод от устойчивых форм коллоидного железа.

Технический результат изобретения заключается в повышении эффективности и экологичности процесса очистки подземных вод от устойчивых форм коллоидного железа за счет отказа от использования электролизера и применения кислот и щелочей.

Указанный технический результат достигается тем, что в способе очистки подземных вод от устойчивых форм железа, включающем регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных значений, в отличие от прототипа, для регулирования pH используют углекислый газ (CO2), а восстановление pH проводят самопроизвольной декарбонизацией углекислого газа из обработанной воды.

Целесообразно для эффективного перемешивания углекислого газа с очищаемой водой использовать центробежный насос.

Для более эффективного выхода углекислого газа из обработанной воды выгодно создавать разряжение над ее поверхностью.

Для многократного использования углекислого газа целесообразно откачивать его после декарбонизации.

Способ очистки подземных вод от устойчивых форм железа, предусматривает применения углекислого газа для регулирования pH до значений 4,5..5, что позволяет легко удалять коллоиды железа на стадии фильтрации, при этом дальнейшее восстановление pH происходит самопроизвольно путем декарбонизацией углекислого газа из обрабатываемой воды.

На фиг.1 представлена технологическая схема устройства для реализации заявляемого способа временного снижения pH обрабатываемой воды, которое содержит эжектор 1, центробежный насос 2, фильтр 3, резервуар 4 с очищенной водой, патрубок 5 для отвода CO2, насос 6 (инжектор). На фиг.2 приведена зависимость количества углекислого газа в литрах от концентрации коллоидного железа в исходной воде в мг/л.

Предлагаемый способ удаления коллоидного железа из подземных вод используется после полного окисления железа, в результате которого формируются устойчивые соединения железа с органическими веществами в коллоидной форме. Подлежащую очистки воду после полного окисления железа, например аэрацией, подают в центробежный насос 2, где происходит активное растворение CO2, который подается из стандартных баллонов через эжектор 1 со скоростью 4 л/ч. Для гомогенного распределения CO2 в воде наиболее рационально вводить газ перед насосом. Это связано с тем, что при прохождении водовоздушной смеси через насос 2, на концах лопастей крыльчатки насоса 2 возникают критические давления, значения которых достигают до 10 кг/см2. При повышении давления диспергированные пузырьки газа активно растворяются в воде с образованием H2CO3, что приводит к временному снижению pH раствора до значения 4…5 с последующей коагуляцией частиц железа. Далее вода поступает на фильтр 3, где происходит осаждение железа в виде Fe(OH)3 на фильтрующей загрузке. Очищенная вода после фильтра 3 поступает в накопительный резервуар 4, в котором происходит самопроизвольное восстановление pH до значений 7,5 за счет удаления CO2 декарбонизацией. Для уменьшения расхода CO2 предусмотрен соединительный патрубок между накопительным резервуаром 4 и эжектором 1 для возвращения CO2 в цикл. Возвращение CO2 к эжектору 1 происходит с помощью насоса 6, который создает над поверхностью воды разряжение за счет чего CO2 направляется в трубопровод эжектора 1. В этом случае достигаются две цели: снижение временной кислотности исходной воды до нормативных значений и многократное использование CO2.

Примеры 1-4.

Эксперименты проводили на модельном растворе близком по составу к природной воде, в котором концентрация исходного коллоидного железа составляла 1,5 мг/л. В модельный раствор, температура которого составляла 20°С, после стадии полного окисления железа вводили CO2 из баллона под давлением 0,15 МПа. Расход CO2 составлял 4 л/ч. Концентрацию вводимого CO2 контролировали временем обработки раствора, которое варьировалось от 5 до 20 минут. Эксперименты проводили в стационарном режиме. Экспериментальные результаты оценки степени удаления коллоидного железа от времени обработки раствора CO2 приведены в таблице 1. Из таблицы 1 видно, что по мере увеличения времени обработки и достижении pH раствора 4,2 степень очистки от железа достигает 90%, что соответствует концентрации железа 0,15 мг/л в сравнении с исходной равной 1,5 мг/л.

Пример 5.

Был проведен эксперимент для раствора, в котором концентрация коллоидного железа составила 2,8 мг/л. В раствор, температура которого составляла 20°С, после стадии полного окисления железа вводили CO2 из баллона под давлением 0,15 МПа. Расход CO2 составлял 4 л/ч. Время обработки раствора углекислым газом (CO2) составляло 20 минут. В результате обработки концентрация коллоидного железа в растворе составила 0,28 мг/л. Полученное значение соответствует предельно допустимой концентрации железа в питьевой воде (0,3 мг/л). Очевидно, что с увеличением концентрации железа в воде необходимо увеличивать время обработки раствора, т.е. увеличивать концентрацию введенного CO2. На фиг.2 приведена экспериментально полученная зависимость вводимого углекислого газа от концентрации коллоидного железа в исходной воде. Пользуясь данной зависимостью, можно оценить количество CO2, необходимое для удаления коллоидного железа до нормативных значений.

Пример 6.

Предложенный способ удаления устойчивых форм железа в виде железоорганических соединений был апробирован на реальной скважиной воде с концентрацией железа 5,6 мг/л, органических веществ гумусового происхождения 3,8 мг O2/л и кремния 20 мг/л. После стадии окисления железа, дальнейшую обработку воды проводили по схеме, представленной на фиг.1. Температура обрабатываемой воды составляла 7°C, что позволяет увеличить эффективность растворения газа в воде. В реальных условиях концентрация вводимого CO2 определяется расходом воды, а не временем обработки CO2. Поэтому в данном примере расход CO2 не изменялся и соответствовал значению 4 л/ч. Скорость подачи воды составляла 25 л/ч. Вода, поступающая в резервуар 4, после стадии обработки CO2 и фильтрации через фильтр 3, имела значение pH равное 4,2. Время восстановления pH раствора до значения 7,5 с использованием наноса 6 составляет 15 минут, а при самопроизвольном восстановлении pH воды без участия насоса - 80 минут. Концентрация железа в резервуаре 4 после полного цикла обработки составляет 0,2 мг/л. Вода, очищенная по предлагаемой схеме соответствует требованиям, предъявляемым СаНПиН 2.1.4. 1074-01.

Таким образом, в предлагаемом способе для снижения pH среды используется экологически безопасный и достаточно дешевый - углекислый газ, что позволяет упростить технологию водоподготовки за счет исключения дополнительной стадии (тонкой) фильтрации и корректировки pH воды подщелачиванием. Процесс восстановления pH воды происходит самопроизвольно, по мере декарбонизации CO2.

Таблица 1
Способ очистки подземных вод от устойчивых форм железа
Пример № Расход
CO2, л/ч
Время обработки CO2, мин Вводимая концентрация CO2 в раствор, мг/л Концентрация CO2, в воде мг/л Полученное значение pH воды (после обработки
CO2)
Концентра
ция железа после обработки, мг/л
Степень очистки по Fe, %
1 4 5 393 198 5,3 0,84 44,4
2 4 10 600 280 4,8 0,68 54,9
3 4 15 1178 356 4,6 0,24 84,8
4 4 20 1300 386 4,2 0,15 90,0

Способ очистки подземных вод от устойчивых форм железа, включающий регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных значений, отличающийся тем, что углекислый газ вводят в подлежащую очистке воду перед центробежным насосом, снижают pH раствора до значения 4-5, создают разрежение над поверхностью обработанной воды, углекислый газ используют многократно путем откачивания после декарбонизации.
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ УСТОЙЧИВЫХ ФОРМ ЖЕЛЕЗА
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ УСТОЙЧИВЫХ ФОРМ ЖЕЛЕЗА
Источник поступления информации: Роспатент

Showing 61-70 of 147 items.
10.12.2014
№216.013.0f28

Способ защиты электродвигателей от коротких замыканий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002535297
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1195

Свч генератор с виртуальным катодом коаксиального типа

Изобретение относится к технике СВЧ и может быть использовано для генерации мощных импульсов электромагнитного излучения сильноточными электронными пучками. СВЧ-генератор с виртуальным катодом коаксиального типа содержит источник высокого напряжения (1), отрицательный электрод которого соединен...
Тип: Изобретение
Номер охранного документа: 0002535924
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.2267

Способ измерения тока в проводнике с помощью герконов

Изобретение относится к измерительной технике и может быть использовано для измерения токов в электроустановках. Способ измерения тока в проводнике с помощью герконов заключается в том, что два геркона с нормально разомкнутыми контактами устанавливают вблизи проводника. Настраивают их так,...
Тип: Изобретение
Номер охранного документа: 0002540260
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2268

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения rhx iny

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из...
Тип: Изобретение
Номер охранного документа: 0002540261
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22c6

Пленкообразующее вещество на основе нефтеполимерной смолы

Изобретение относится к технологии полимеров и может найти применение в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Пленкообразующее вещество на основе нефтеполимерной смолы включает озонированную нефтеполимерную смолу, при этом озонированная нефтеполимерная...
Тип: Изобретение
Номер охранного документа: 0002540355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231d

Способ измерения фоновых концентраций веществ в болотных водах

Изобретение относится к гидрохимии болот и может быть использовано для измерения фоновых концентраций веществ в болотных водах. Сущность: выделяют однородные участки болота на основе анализа глубин торфяной залежи и болотных фитоценозов. Измеряют фоновую концентрацию вещества в болотных водах...
Тип: Изобретение
Номер охранного документа: 0002540442
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231e

Способ определения места обрыва на воздушной линии электропередачи

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов...
Тип: Изобретение
Номер охранного документа: 0002540443
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231f

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002540444
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23ea

Когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья

Изобретение относится к теплоэнергетике и может быть использовано для автономного энергообеспечения малых городов, поселков городского типа и сельских поселений. Энергоустановка содержит корпус (1), покрытый теплоизоляцией (2). Внутри корпуса (1) размещена газификационная печь (3) в виде сосуда...
Тип: Изобретение
Номер охранного документа: 0002540647
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.243f

Ячеистый теплозвукоизоляционный материал

Изобретение относится к области создания пористых теплозвукоизоляционных материалов и может быть использовано в строительстве, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения...
Тип: Изобретение
Номер охранного документа: 0002540732
Дата охранного документа: 10.02.2015
Showing 61-70 of 238 items.
20.11.2013
№216.012.8199

Цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный цеолит...
Тип: Изобретение
Номер охранного документа: 0002498853
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.820b

Способ получения волластонитовых керамических пигментов на основе двухкальциевого силиката

Изобретение относится к области производства пигментов для фарфоровых, полуфарфоровых и майоликовых изделий. Способ заключается в быстром охлаждении в воде обожженного при температурах 1050-1100°C геля, полученного обработкой концентрированной соляной кислотой смеси тонкомолотого отхода -...
Тип: Изобретение
Номер охранного документа: 0002498967
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.83a1

Устройство для возбуждения высокочастотного факельного разряда

Изобретение относится к плазменной технике и может быть использовано для инициирования высокочастотной плазмы. Устройство для возбуждения высокочастотного факельного разряда содержит диэлектрическую трубку, установленную в пазу диэлектрического фланца, в осевом отверстии которого размещен полый...
Тип: Изобретение
Номер охранного документа: 0002499373
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.862e

Устройство для моделирования объединенного регулятора потока мощности

Изобретение относится к области моделирования объектов электрических систем и может быть использовано для воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов в объединенном регуляторе потока мощности в специализированных многопроцессорных...
Тип: Изобретение
Номер охранного документа: 0002500028
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8806

Способ определения оптимальной скорости резания

Способ относится к твердосплавным режущим инструментам группы применяемости Р в виде режущих пластин и заключается в том, что проводят измерения температуры в зоне рабочего контакта твердый сплав - обрабатываемый материал при различных скоростях резания с построением графической зависимости....
Тип: Изобретение
Номер охранного документа: 0002500504
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.889b

Способ получения нанодисперсной шихты для изготовления нитридной керамики

Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота...
Тип: Изобретение
Номер охранного документа: 0002500653
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8977

Электроимпульсный буровой снаряд

Изобретение относится к области проходки скважин и стволов высоковольтными разрядами в крепких горных породах и может найти применение в горнодобывающей промышленности, а также в строительной отрасли. В снаряде последовательно соединены гидротоковвод (1), колонна бурильных труб (2) и буровой...
Тип: Изобретение
Номер охранного документа: 0002500873
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.897b

Установка для обработки буровых и тампонажных растворов

Изобретение относится к нефте- и горнодобывающим отраслям промышленности и может быть использовано для обработки цементных, буровых, тампонажных растворов. Установка содержит последовательно соединенные повысительно-выпрямительные узлы с фильтром высших гармоник на входе, генератор импульсных...
Тип: Изобретение
Номер охранного документа: 0002500877
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8987

Способ электроразрядного разрушения твердых материалов

Изобретение относится к горнодобывающей и строительной отраслям промышленности. Способ электроразрядного разрушения твердых материалов включает формирование шпура в твердом материале, размещение в нем картриджа с веществом, предающим ударную волну, и взрываемым проводником, и инициирование...
Тип: Изобретение
Номер охранного документа: 0002500889
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89fc

Способ идентификации водородного охрупчивания легких сплавов на основе титана

Использование: для идентификации водородного охрупчивания легких сплавов на основе титана. Сущность заключается в том, что измеряют зависимость скорости распространения ультразвуковой волны в легких сплавах от содержания в них водорода. Способ отличается тем, что на поверхности металла...
Тип: Изобретение
Номер охранного документа: 0002501006
Дата охранного документа: 10.12.2013
+ добавить свой РИД