×
27.08.2013
216.012.6528

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПРОНИКНОВЕНИЯ ПОЛЯ ТЕРАГЕРЦОВЫХ ПОВЕРХНОСТНЫХ ПЛАЗМОНОВ В ОКРУЖАЮЩУЮ СРЕДУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптическим методам контроля поверхности металлов и полупроводников в терагерцовом диапазоне спектра и может найти применение в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек, в методах по обнаружению неоднородностей (на) проводящей поверхности, в инфракрасной (ИК) рефрактометрии металлов для определения их диэлектрической проницаемости, в ИК сенсорных устройствах и контрольно-измерительной технике. Способ включает измерение интенсивности поля поверхностных плазмонов (ПН) в плоскости падения излучения, генерирующего пучок лучей ПП, и расчет значения 5 по результатам измерений, для чего ПП преобразуют в объемную волну на линии фронта, принадлежащей выбранной плоскости поперечного сечения пучка, фокусируют волну в линию, лежащую в плоскости падения, и измеряют распределение интенсивности излучения на этой линии и угол наклона лучей волны к поверхности, направляющей ПП. Изобретение позволяет уменьшить время измерений. 2 ил.
Основные результаты: Способ определения глубины проникновения поля терагерцовых поверхностных плазмонов в окружающую среду, включающий измерение интенсивности поля поверхностных плазмонов в плоскости падения излучения, генерирующего пучок лучей поверхностных плазмонов, и расчет значения глубины проникновения поля терагерцовых поверхностных плазмонов в окружающую среду по результатам измерений, отличающийся тем, что поверхностные плазмоны преобразуют в объемную волну на линии фронта, принадлежащей выбранной плоскости поперечного сечения пучка, фокусируют волну в линию, лежащую в плоскости падения, и измеряют распределение интенсивности излучения на этой линии и угол наклона лучей волны к поверхности, направляющей поверхностные плазмоны.

Изобретение относится к оптическим методам контроля поверхности металлов и полупроводников в терагерцовом (ТГц) диапазоне спектра и может найти применение в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек, в методах по обнаружению неоднородностей (на) проводящей поверхности, в инфракрасной (ИК) рефрактометрии металлов для определения их диэлектрической проницаемости, в ИК сенсорных устройствах и контрольно-измерительной технике.

Поверхностные плазмоны (ПП) - представляют собой разновидность поверхностных электромагнитных волн, направляемых проводящей поверхностью, и широко используются для ее контроля и спектроскопии [Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Аграновича и Д.Л. Миллса. - М.: Наука, 1985. - 525 с.]. Одной из важнейших характеристик ПП, зависящих от оптических свойств поверхности и ее покрытия, является глубина проникновения поля ПП в окружающую среду (в частности, воздух или вакуум) - расстояние, на котором интенсивность поля уменьшается в e≈2,718 раз; здесь - нормальная (относительно поверхности) компонента волнового числа ПП, ko=2π/λ, k - комплексный показатель преломления ПП, ε - диэлектрическая проницаемость окружающей среды, λ - длина волны излучения, генерирующего ПП. Измеряя δ, можно не только обнаруживать (по вариациям δ вдоль трека ПП) неоднородности на поверхности, но и определять диэлектрическую проницаемость материала проводящего образца или толщину и показатель преломления переходного слоя поверхности [Gerasimov V.V., Knyazev B.A., Nikitin A.K., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v.98, 171912].

Известен способ определения глубины проникновения поля ТГц ПП в окружающую среду δ, включающий измерение интенсивности поля вдоль нормали к треку ПП в плоскости падения излучения, генерирующего ПП, внесение в поле ПП острия оптоволоконного зонда, соединенного с фото детектором, подключенным к гальванометру, измерение зависимости интенсивности светового сигнала, поступающего на фотодетектор, от расстояния, отделяющего острие от поверхности, направляющей ПП, и расчет значения δ по результатам измерений [Mueckstein R., Mitrofanov О. Imaging of terahertz surface plasmon waves excited on a gold surface by a focused beam // Optics Express, 2011, v.19, No.4, p.3212-3217]. Основными недостатками способа являются возмущение зондом поля ПП, что искажает результаты измерений, и большая продолжительность процедуры зондирования.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ определения глубины проникновения поля ТГц ПП в окружающую среду δ, включающий измерение интенсивности поля вдоль нормали к треку ПП в плоскости падения излучения, генерирующего ПП, внесение в поле подключенного к гальванометру фотоприемника, снабженного щелевой диафрагмой, ориентированной параллельно направляющей ПП поверхности и перпендикулярно треку, измерение на торце образца зависимости интенсивности поля от расстояния, отделяющего щель от поверхности, и расчет значения δ по результатам измерений [Gerasimov V.V., Knyazev В.А., Nikitin А.К., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v.98, 171912].

Основными недостатками способа являются искажение поля ПП отраженным от диафрагмы излучением, невозможность выполнения измерений в произвольной точке трека и их большая продолжительность.

Техническим результатом, на достижение которого направлено изобретение, является уменьшение времени измерений.

Технический результат достигается тем, что в известном способе определения глубины проникновения поля ТГц ПП в окружающую среду δ, включающем измерение интенсивности поля ПП в плоскости падения излучения, генерирующего пучок лучей ПП, и расчет значения δ по результатам измерений, согласно изобретению, ПП преобразуют в объемную волну на линии фронта, принадлежащей выбранной плоскости поперечного сечения пучка, фокусируют волну в линию, лежащую в плоскости падения, и измеряют распределение интенсивности излучения на этой линии и угол наклона лучей волны к поверхности, направляющей ПП.

Уменьшение времени измерений достигается в результате одновременного измерения линейкой фотодетекторов интенсивности поля ПП в ряде точек окружающей среды над контролируемой точкой трека.

Изобретение поясняется чертежами: на рис. 1 - схема устройства, реализующего способ; на рис. 2 - зависимость интенсивности поля ПП в рассматриваемом примере от расстояния, отделяющего данную точку поля от поверхности образца.

Предлагаемый способ может быть реализован с использованием устройства, схема которого приведена на рис.1, где цифрами обозначены: 1 - источник монохроматического излучения; 2 - поляризатор; 3 - плоское зеркало; 4 - вогнутое зеркало с цилиндрической отражающей поверхностью; 5 - проводящий образец, 6 - призма с металлизированным плоским основанием, ориентированным параллельно поверхности образца 5; 7 - поглощающий плоский экран, ориентированный перпендикулярно плоскости падения излучения и край которого удален от образца 5 на расстояние в несколько миллиметров; 8 - наклонное подвижное плоское зеркало, преобразующее ПП в объемную волну; 9 - линза с цилиндрической фокусирующей поверхностью, 10 - линейка фото детекторов, размещенная в плоскости падения и находящаяся в фокусе линзы 9; 11 - набор гальванометров, раздельно подключенных к детекторам линейки 10; 12 - устройство обработки информации; 13 - подвижная платформа с установленными на ней элементами 8, 9 и 10.

Способ осуществляется следующим образом.

Излучение источника 1 направляют на поляризатор 2, выделяющий из электромагнитной волны p-составляющую. С помощью зеркал 3 и 4 поляризованное излучение направляют в зазор между проводящей поверхностью образца 5 и металлизированным основанием призмы 6. В зазоре излучение преобразуется в ТМ-моды полого металлического волновода, образованного основанием призмы 6 и поверхностью образца 5. Дифрагируя на крае призмы 6, моды с некоторой эффективностью преобразуются в ПП и порождают веер паразитных объемных волн, поглощаемых экраном 7 [Gong M., Jeon T.-L, Grischkowsky D. THz surface wave collapse on coated metal surfaces // Optics Express, 2009, v.1 7(19), 17088]. Пучок ПП проходит под экраном 8 и распространяется в плоскости падения по поверхности образца 5. Дойдя до передней кромки зеркала 8, перпендикулярной волновому фронту пучка, ПП преобразуются в объемную волну (OB). Преобразование ПП в объемное излучение происходит в результате сообщения ПП зеркалом встречного (по отношению к направлению распространения ПП) отрицательного импульса. Что обеспечивает выполнение неравенства kПП<ko (где kПП и ko - модули волновых векторов ПП и плоской волны в окружающей среде, соответственно), необходимого для трансформации ПП в объемную волну [Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Аграновича и Д.Л. Миллса. - M.: Наука, 1985. - 525 с.]. Отметим, что распределение интенсивности в ОВ, распространяющейся параллельно поверхности образца 5, идентично распределению интенсивности поля ПП на кромке зеркала 8. Эта OB, направляется зеркалом 8 через линзу 9 на линейку 10. Электрические сигналы с выходов детекторов линейки 10 измеряются соответствующими гальванометрами набора 11 и поступают на устройство 12, которое нормирует их на максимальный сигнал и, с учетом угла наклона лучей ОВ к поверхности образца 5, вычисляет искомое значение глубины проникновения поля ПП в окружающую среду δ. Перемещая платформу 13 вдоль направления трека ТГц ПП аналогичным образом можно определить величину δ в любой точке трека (в случае наличия на поверхности образца 5 неоднородности, значение δ может соответствующим образом изменяться).

В качестве примера применения заявляемого способа рассмотрим возможность определения величины δ для ТГц ПП, генерируемых излучением лазера на свободных электронах с длиной волны λ=130 мкм [Knyazev В.A., Kulipanov G.N., Vinokurov N.A.. Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements // Meas. Sci. & Techn., 2010, v.21, 054017] на плоской поверхности размещенного в воздухе золотого образца длиной 20 см. В этом случае комплексный показатель преломления ПП, рассчитанный с использованием дисперсионного уравнения ПП для двухслойной структуры и модели Друде для диэлектрической проницаемости золота [Ordal М.А., Bell R.J., Alexander R.W., Long L.L., and Querry M.R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W // Applied Optics, 1985, v. 24, No.24, p. 4493-4499], равен κ=1,000273+i·5,6·10-7, что соответствует длине распространения ПП, равной 180 см. Угол наклона зеркала 8 к поверхности образца 5, положим равным 45°, что обеспечивает распространение OB, порожденной ПП на передней кромке зеркала 8, перпендикулярно к треку ПП. В качестве фотоприемного устройства выберем болометрическую матрицу, состоящую из 320×240 пикселей, размером 51×51 мкм каждый [Демьяненко М.А., Есаев Д.Г., Овсюк В.Н., Фомин Б.И., Асеев А.Л., Князев Б.А., Кулипанов Г.Н., Винокуров Н.А. Матричные микроболометрические приемники для ИК и ТГц диапазонов // Оптический журнал, 2009, т. 76, №12, с.5-11]. На рис. 2 приведена зависимость нормированной интенсивности поля ПП I/I0 (где I0 - интенсивность поля ПП на поверхности) в рассматриваемом примере от расстояния г, отделяющего данную точку поля от поверхности образца, с учетом искажения распределения I/I0(z) вследствие наклона зеркала 8 на 45°. Из этой зависимости следует, что величина δ в рассматриваемом примере равна 15,3 мм. Поле ПП может быть полностью (в пределах величины δ) практически мгновенно зарегистрировано столбцом матрицы, при условии размещения ее стороной в 320 пикселей параллельно плоскости падения, а значение δ - количественно оценено устройством обработки информации с точностью до 0,3% (отношение размера пикселя к δ).

Таким образом, приведенный пример наглядно демонстрирует возможность практически мгновенного определения глубины проникновения поля ТГц ПП в окружающую среду δ, что и обеспечивает достижение поставленной в изобретении цели - сокращение времени измерений величины δ.

Способ определения глубины проникновения поля терагерцовых поверхностных плазмонов в окружающую среду, включающий измерение интенсивности поля поверхностных плазмонов в плоскости падения излучения, генерирующего пучок лучей поверхностных плазмонов, и расчет значения глубины проникновения поля терагерцовых поверхностных плазмонов в окружающую среду по результатам измерений, отличающийся тем, что поверхностные плазмоны преобразуют в объемную волну на линии фронта, принадлежащей выбранной плоскости поперечного сечения пучка, фокусируют волну в линию, лежащую в плоскости падения, и измеряют распределение интенсивности излучения на этой линии и угол наклона лучей волны к поверхности, направляющей поверхностные плазмоны.
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПРОНИКНОВЕНИЯ ПОЛЯ ТЕРАГЕРЦОВЫХ ПОВЕРХНОСТНЫХ ПЛАЗМОНОВ В ОКРУЖАЮЩУЮ СРЕДУ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПРОНИКНОВЕНИЯ ПОЛЯ ТЕРАГЕРЦОВЫХ ПОВЕРХНОСТНЫХ ПЛАЗМОНОВ В ОКРУЖАЮЩУЮ СРЕДУ
Источник поступления информации: Роспатент

Showing 41-50 of 50 items.
19.01.2018
№218.016.0193

Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека

Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека. Устройство включает в себя источник монохроматического излучения, первый фокусирующий...
Тип: Изобретение
Номер охранного документа: 0002629909
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.01d2

Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского...
Тип: Изобретение
Номер охранного документа: 0002629928
Дата охранного документа: 04.09.2017
20.01.2018
№218.016.119b

Способ определения диэлектрической проницаемости металла в терагерцовом диапазоне спектра

Изобретение относится к области оптических измерений и касается способа определения диэлектрической проницаемости металла в терагерцовом диапазоне спектра. Способ включает в себя возбуждение зондирующим пучком поверхностной электромагнитной волны (ПЭВ) на плоской поверхности металлического...
Тип: Изобретение
Номер охранного документа: 0002634094
Дата охранного документа: 23.10.2017
17.02.2018
№218.016.2acd

Способ генерации непрерывного широкополосного инфракрасного излучения с регулируемым спектром

Изобретение относится к области оптики и касается способа генерации непрерывного широкополосного инфракрасного излучения с регулируемым спектром. Способ включает в себя нагрев металлического тела, содержащего две смежные плоские грани, генерацию оптическими фононами тела на одной из граней...
Тип: Изобретение
Номер охранного документа: 0002642912
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3174

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области оптических измерений и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство включает в себя источник монохроматического излучения, твердотельный образец с направляющей волну плоской гранью,...
Тип: Изобретение
Номер охранного документа: 0002645008
Дата охранного документа: 15.02.2018
29.04.2019
№219.017.4670

Способ построения сейсмического глубинного разреза

Изобретение относится к сейсмической разведке и может быть использовано для построения изображений сложно построенных сред в виде глубинного разреза A(x,h). Сущность способа состоит в том, что для каждой отображаемой точки OT(x,h) глубинного разреза осуществляют обзор волнового поля A(x,t) на n...
Тип: Изобретение
Номер охранного документа: 0002463628
Дата охранного документа: 10.10.2012
18.05.2019
№219.017.5b42

Способ диагностики опасных ситуаций при подземной добыче каменного угля и методика прогноза параметров зон трещиноватости, образованной гидроразрывом пласта

Группа изобретений относится к технологиям, обеспечивающим безопасную подземную добычу твердых углеводородов шахтным способом. Способ основан на наземном сейсмическом мониторинге геодинамического состояния горного массива по наблюдениям за сейсмической активностью кровли пласта и его выработки,...
Тип: Изобретение
Номер охранного документа: 0002467171
Дата охранного документа: 20.11.2012
29.06.2019
№219.017.9f95

Способ получения гамма-глицина из растворов

Изобретение относится к области фармацевтической и пищевой промышленности, конкретно к способу получения гамма-глицина, имеющего широкое применение в качестве биологически активной добавки. Способ заключается в том, что гамма-глицин получают из водных растворов глицина в присутствии малоновой...
Тип: Изобретение
Номер охранного документа: 0002470913
Дата охранного документа: 27.12.2012
29.06.2019
№219.017.a187

Способ получения гамма-глицина из растворов

Изобретение относится к области химико-фармацевтической и пищевой промышленности, конкретно к способу получения гамма-глицина, имеющего широкое применение в медицине и пищевой промышленности в качестве биологически активной добавки. Способ заключается в перекристаллизации глицина в водном...
Тип: Изобретение
Номер охранного документа: 0002462452
Дата охранного документа: 27.09.2012
29.06.2019
№219.017.a19b

Способ оценки функционального состояния сердца

Изобретение относится к медицине и может быть использовано для оценки функционального состояния сердца. Для этого во время диагностической процедуры по медицинским показаниям берут методом биопсии образцы ткани сердца, в котором определяют содержание химических элементов таблицы Д.И.Менделеева,...
Тип: Изобретение
Номер охранного документа: 0002466389
Дата охранного документа: 10.11.2012
Showing 51-60 of 62 items.
05.04.2019
№219.016.fd4c

Устройство для наблюдения обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в кристаллической среде

Изобретение относится к акустооптике и может найти применение для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Устройство для наблюдения обратной коллинеарной дифракции...
Тип: Изобретение
Номер охранного документа: 0002683886
Дата охранного документа: 03.04.2019
29.05.2019
№219.017.65af

Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов

Изобретение относится к спектрофотометрии и может быть использовано для исследования пространственного распределения комплексного показателя преломления по поверхности сильно поглощающих материалов. Образец размещают на плоской поверхности элемента НПВО с высоким показателем преломления, на...
Тип: Изобретение
Номер охранного документа: 0002396547
Дата охранного документа: 10.08.2010
09.06.2019
№219.017.7d91

Устройство для измерения длины распространения монохроматических поверхностных электромагнитных волн инфракрасного диапазона

Устройство содержит источник лазерного излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, состоящий из двух частей, имеющих сопряженные поверхности, зафиксированный относительно первой части по ходу излучения элемент преобразования излучения в ПЭВ, приемник излучения....
Тип: Изобретение
Номер охранного документа: 0002470269
Дата охранного документа: 20.12.2012
10.07.2019
№219.017.b19f

Способ дисперсионной фурье-спектрометрии в непрерывном широкополосном излучении

Изобретение относится к оптическим методам исследования материалов, а именно к определению спектров комплексной диэлектрической проницаемости или оптических постоянных. Способ заключается в размещении в каждом плече двухлучевого интерферометра по одному идентичному герметичному контейнеру с...
Тип: Изобретение
Номер охранного документа: 0002468344
Дата охранного документа: 27.11.2012
06.09.2019
№219.017.c7d3

Устройство для определения длины распространения поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения

27 Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства для определения длины распространения поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство содержит источник излучения,...
Тип: Изобретение
Номер охранного документа: 0002699304
Дата охранного документа: 04.09.2019
24.10.2019
№219.017.dab1

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области исследования поверхности металлов и полупроводников оптическими методами и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002703772
Дата охранного документа: 23.10.2019
24.10.2019
№219.017.dab5

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на плоской грани проводящего тела

Изобретение относится к области исследования поверхности металлов и полупроводников путем измерения характеристик направляемых ей поверхностных электромагнитных волн (ПЭВ) и может найти применение в сенсорных устройствах, абсорбционных спектрометрах и интерферометрах, использующих в качестве...
Тип: Изобретение
Номер охранного документа: 0002703941
Дата охранного документа: 23.10.2019
21.12.2019
№219.017.efd6

Интерферометр майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП). Интерферометр содержит источник коллимированного р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002709600
Дата охранного документа: 18.12.2019
22.12.2019
№219.017.f0ca

Способ обнаружения объекта на выпуклой металлической поверхности за линией её горизонта

Изобретение относится к области зондирования удаленных объектов электромагнитным излучением и касается способа обнаружения объекта на выпуклой металлической поверхности за линией ее горизонта. Способ включает в себя генерацию на поверхности коллимированного пучка плазмон-поляритонов (ППП) с...
Тип: Изобретение
Номер охранного документа: 0002709705
Дата охранного документа: 19.12.2019
13.06.2020
№220.018.26ba

Управляемый ультразвуком поляризатор терагерцового излучения

Изобретение относится к оптике терагерцового (ТГц) диапазона и может быть использовано для поляризации и амплитудной модуляции ТГц излучения без использования мобильных оптических устройств, размещаемых на пути пучка излучения. Суть изобретения заключается в том, что поляризатор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002723150
Дата охранного документа: 09.06.2020
+ добавить свой РИД