×
10.07.2019
219.017.b19f

Результат интеллектуальной деятельности: СПОСОБ ДИСПЕРСИОННОЙ ФУРЬЕ-СПЕКТРОМЕТРИИ В НЕПРЕРЫВНОМ ШИРОКОПОЛОСНОМ ИЗЛУЧЕНИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптическим методам исследования материалов, а именно к определению спектров комплексной диэлектрической проницаемости или оптических постоянных. Способ заключается в размещении в каждом плече двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, в одном из которых в измерительном плече размещают прозрачный образец исследуемого вещества. В контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n)=λ/, где - расстояние, проходимое излучением в образце, λ - минимальная длина волны излучения. Пропускают через оба контейнера излучение и дискретно регистрируют интерферограмму, формируемую на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону. Обрабатывают полученную интерферограмму с помощью полного Фурье-преобразования. Изобретение позволяет повысить точность измерений и расширить класс исследуемых веществ. 1 ил.

Изобретение относится к оптическим методам исследования материалов, а именно - к определению спектров комплексной диэлектрической проницаемости или оптических постоянных (показателя преломления n и показателя поглощения k) вещества в результате одновременных амплитудно-фазовых измерений в рабочем диапазоне частот зондирующего излучения и может найти применение в оптических исследованиях физико-химических процессов, в дисперсионной спектроскопии, в оптической контрольно-измерительной аппаратуре и рефрактометрии материалов.

Дисперсионная Фурье-спектроскопия (ДФС) позволяет определять в результате амплитудно-фазовых измерений частотные зависимости n и k (связанные известными соотношениями с комплексной диэлектрической проницаемостью) образца в оптическом диапазоне при использовании широкополосных источников излучения [1, 2].

Амплитудно-фазовая Фурье-спектроскопия, являющаяся разновидностью ДФС, основана на анализе интерференционной картины, образованной в параллельных пучках широкополосного излучения, один из которых взаимодействует с образцом. Для получения информации о спектрах амплитуд и фаз излучения выполняют полное (косинусное и синусное) Фурье-преобразование интерферограммы, полученной при изменении разности хода опорного и измерительного пучков.

Известен способ асимметричной дисперсионной Фурье-спектрометрии, включающий размещение образца в одном плече (измерительном) двухлучевого статического интерферометра, воздействие на образец перестраиваемым по частоте монохроматическим излучением, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования [3]. Основным недостатком известного способа является большая продолжительность и низкая точность измерений, что обусловлено необходимостью дискретной перестройки источника по частоте и многократного повторения процедуры измерений на каждой частоте излучения.

Наиболее близким по технической сущности к заявляемому является способ дисперсионной Фурье-спектрометрии в широкополосном излучении, включающий размещение в каждом из плеч двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча образца исследуемого вещества, пропускание через оба контейнера непрерывного широкополосного излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования [4]. Основным недостатком известного способа является низкая точность измерений, что обусловлено неоднозначностью по целому числу 2π при определении фазового набега Δφ излучения в образце исследуемого вещества и малостью длины взаимодействия излучения с веществом при ограничении Δφ величиной 2π.

Техническим результатом, на достижение которого направлено настоящее изобретение, является повышение точности измерений и расширение класса исследуемых веществ и образцов.

Технический результат достигается тем, что в известном способе дисперсионной Фурье-спектрометрии в широкополосном излучении, включающем размещение в каждом плече двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча прозрачного образца исследуемого вещества, пропускание через оба контейнера излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования, в контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n0, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n0)=λmin/a, где a - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения.

Повышение точности измерений заявляемым способом достигается в результате устранения неоднозначности по целому числу 2π и увеличения пути излучения в исследуемом веществе. Повышение точности становится возможным благодаря наличию в контейнерах веществ с близкими показателями преломления в пределах полосы частот излучения (это различие Δn не должно превышать λmin/a, где а - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения) и равенству расстояний, проходимых излучением в контейнерах. Действительно, в этом случае изменение разности фаз Δφ для составляющей излучения с данной длиной волны λ в интерферирующих пучках оказывается равным не Δφ=k0·(n-1)·a как в способе-прототипе (где k0=2π/λ; n - показатель преломления исследуемого вещества на данной λ), а-Δφ=k0·Δn·a. Но, поскольку в заявляемом способе Δn мало, то равенство Δφ=2π будет достигаться при а, значительно большем, по сравнению с прототипом. Таким образом, заявляемый способ позволяет увеличить длину взаимодействия излучения с исследуемым веществом, что обуславливает повышение точности измерения коэффициента его поглощения.

Расширение класса исследуемых веществ и образцов обеспечивается также благодаря размещению в контейнере опорного плеча интерферометра вещества с показателем преломления, близким к показателю преломления исследуемого вещества в полосе частот излучения, поскольку в этом случае расстояние а, проходимое излучением в исследуемом веществе при выполнении условия Δφ≤2π, становится в (n-1)/Δn раз больше, по сравнению с прототипом. Поэтому заявляемым способом можно исследовать не только тонкие, но и протяженные образцы (расширение класса исследуемых образцов), а также - и оптически более плотные материалы (расширение класса исследуемых веществ).

На фиг.1 приведена схема спектрометра, позволяющего реализовать заявляемый способ, где цифрами обозначены: 1 герметичный контейнер с прозрачными окнами, заполняемый исследуемым веществом; 2 герметичный контейнер с прозрачными окнами, заполняемый веществом с известной зависимостью его показателя преломления от частоты излучения; 3 источник широкополосного немонохроматического излучения; 4 светоделитель; 5 линия задержки, состоящая из неподвижного 5а и подвижного 5б уголковых отражателей, обеспечивает сканирование разности оптических путей интерферирующих пучков; 6 плоское зеркало, 7 плоское зеркало, размещенное в контейнере 1; 8 светоделитель, размещенный в контейнере 2 и сопряженный с зеркалом 7; 9 линия задержки, состоящая из неподвижного 9а и подвижного 9б уголковых отражателей, обеспечивает сохранность когерентности соответственных монохроматических компонент в интерферирующих пучках; 10 фотоприемное устройство (ФПУ); 11 блок обработки информации, способный выполнять полное Фурье-преобразование регистрируемой в ходе сканирования интерферограммы.

Способ осуществляется следующим образом. В контейнере 1 размещают прозрачный образец исследуемого вещества, а в контейнере 2 - эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с нормальной дисперсией и известной зависимостью показателя преломления n0 от частоты, который мало отличается от показателя преломления исследуемого вещества n в пределах полосы излучения. Коллимированное излучение источника 3 поступает на светоделитель 4 и разделяется им на два пучка - опорный и измерительный. Линия задержки 5, сканированием по заданному закону отражателя 5б, осуществляет заданное изменение оптической разности хода интерферирующих пучков. Прошедший через линию 5 пучок измерительного плеча интерферометра отражается зеркалом 6 и направляется на входное окно контейнера 1, в котором он взаимодействует с исследуемым веществом, отражается зеркалом 7 и, выйдя из контейнера 1 через его другое окно, падает на светоделитель 8. На противоположную сторону делителя 8 через окно контейнера 2 поступает прошедшее через линию 9 излучение из опорного плеча. Совмещенные делителем 8 пучки из обоих плеч выходят из контейнера 2 через его третье окно и направляются на вход ФПУ 10, регистрирующего интерференционную интенсивность излучения. Генерируемый устройством 10 электрический сигнал поступает в блок обработки информации 11.

До начала измерений отражатель 5б устанавливают в среднее (в пределах его хода) положение. Число N положений отражателя 5б, пропорциональное частотному разрешению спектрометра, выбирают исходя из требований к точности измерений. Кроме того, изменяя с помощью линии 9 разность оптических путей пучков, добиваются максимальной видности интерференционной картины.

Зарегистрировав в блоке 11 интерферограмму, представляющую собой совокупность значений интерференционного сигнала при N положениях отражателя 5б, выполняют полное Фурье-преобразование интерферограммы и получают фазовый и амплитудный спектры исследуемого вещества в диапазоне частот излучения источника 1. Для повышения соотношения "полезный сигнал/шум" такие измерения выполняют многократно, находят средние значения сигналов в точках отсчета, совокупность которых представляет собой усредненную интерферограмму, которая и подвергается полному Фурье-преобразованию. Кроме того, для дополнительного повышения отношения "полезный сигнал/шум" в процессе измерений может быть применена также известная методика фазовой модуляции интерференционного сигнала путем колебаний отражателя 5б, что позволяет реализовать селективную регистрацию электрического сигнала с выхода ФПУ 10 на частоте фазовой модуляции.

В качестве примера применения заявляемого способа рассмотрим возможность получения с помощью описанного выше прибора спектров n и k воды, находящейся при температуре 18°C, в диапазоне λ, от 0,4 мкм до 0,8 мкм. В качестве источника излучения со сплошным спектром выберем нить лампы накаливания при температуре 2000°C, снабженную соответствующим полосовым фильтром. Учитывая, что показатель преломления воды n при λ=0,4 мкм равен приблизительно 1,4 [5], в качестве эталонного тела, помещаемого в контейнер опорного плеча, выберем такую же воду, но находящуюся при температуре 60°C, и показатель преломления которой n0 меньше n на величину Δn≈1,5·10-4 [6]. Тогда расстояние а, проходимое излучением в образце, не должно превышать 2,7 мм, чтобы выполнить условие Δφ=k0·Δn·a≤2π (где k0 соответствует λ=0,4 мкм). В случае же применения способа-прототипа, когда контейнер в опорном плече заполнен воздухом, условие Δφ≤2π будет выполнено при a≤1 мкм, поскольку Δn в этом случае равно 0,4. Следовательно, расстояние, проходимое излучением в воде, при применении заявляемого способа, будет в 2700 раз больше, чем в прототипе. В соответствующее число раз уменьшится ошибка определения как n, так и k для воды в рабочем диапазоне длин волн излучения.

Таким образом, в результате увеличения расстояния, проходимого излучением в исследуемом веществе, и ликвидации неоднозначности по целому числу 2π, применение заявляемого способа позволяет как повысить точность измерений, так и расширить класс исследуемых веществ и образцов.

Источники информации

1. Золотарев В.М. Методы исследования материалов фотоники: элементы теории и техники. СПб: СПбГУ ИТМО, 2008. - 275 с.

2. Креницкий А.П. Проблемы измерения диэлектрических характеристик нано- и микроразмерных сред в терагерцевом диапазоне частот // Успехи современной радиоэлектроники, 2008, №9, с.30-35.

3. Егорова Л.В., Ермаков Д.С., Кувалкин Д.Г., Таганов O.K. Фурье-спектрометры статического типа // Оптико-механическая промышленность, 1992, №2, с.3-14.

4. Birch J.R., Parker T.J. Dispersive Fourier Transform Spectroscopy, Ch.3 in "Infrared and Millimeter Waves", v.2. Ed. by K.J.Button, Academic Press, N.Y. 1979, p.137-271 (прототип).

5. Золотарев В.М., Морозов В.Н., Смирнова Е.В. Оптические постоянные природных и технических сред. Справочник // Л.: Химия, 1984. - с.15.

6. Abbate G., Bernini U., Ragozzino E. and Somma F. The temperature dependence of the refractive index of water // J. Phys. D, 1978, v.11, p.1167-1172.

Способ дисперсионной Фурье-спектрометрии в непрерывном широкополосном излучении, включающий размещение в измерительном и опорном плечах двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча прозрачного образца исследуемого вещества, пропускание через оба контейнера излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования, отличающийся тем, что в контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n)=λ/a, где а - расстояние, проходимое излучением в образце, λ - минимальная длина волны излучения.
Источник поступления информации: Роспатент

Showing 1-10 of 17 items.
20.02.2013
№216.012.2718

Штамм trichoderma harzianum rifai - продуцент ингибитора вируса кольцевой пятнистости табака (tobacco ringspot virus)

Изобретение относится к биотехнологии. Штамм Trichoderma harzianum Rifai, обладающий L-лизин-альфа-оксидазной активностью, депонирован во Всероссийской Коллекции Промышленных Микроорганизмов (ВКПМ) под регистрационным номером ВКПМ F-180 и может быть использован в агробиотехнологии и...
Тип: Изобретение
Номер охранного документа: 0002475528
Дата охранного документа: 20.02.2013
20.03.2013
№216.012.2fc8

Взлетно-посадочная полоса аэродрома

Технический результат изобретения направлен на улучшение условий безопасности взлета и посадки большегрузных летательных аппаратов путем обеспечения совместной работы железобетонного покрытия существующей части взлетно-посадочной полосы и полосы расширения, а также естественного и...
Тип: Изобретение
Номер охранного документа: 0002477767
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.2fca

Устройство для вытрамбовывания котлована

Изобретение относится к строительной техники, применяемой при устройстве фундаментов в вытрамбованных котлованах. Устройство для вытрамбовывания котлована содержит установленную на базовую машину лебедку с гибким тяговым элементом, направляющий ствол, опорный кольцевой элемент, трамбовку. На...
Тип: Изобретение
Номер охранного документа: 0002477769
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.2fe3

Способ разработки свиты высокогазоносных пластов угля

Изобретение относится к горной промышленности, а именно к способам вентиляции при подземной разработке свиты высокогазоносных пластов угля. Способ включает выемку угля одновременно на верхнем и нижнем пластах с опережением очистных работ на верхнем пласте и транспортирование угля к скиповому...
Тип: Изобретение
Номер охранного документа: 0002477794
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.3012

Инфракрасный амплитудно-фазовый плазмонный спектрометр

Изобретение относится к инфракрасной спектроскопии поверхностей металлов и полупроводников. Спектрометр содержит перестраиваемый по частоте источник p-поляризованного монохроматического излучения, элемент преобразования излучения источника в поверхностные плазмоны (ПП), твердотельный проводящий...
Тип: Изобретение
Номер охранного документа: 0002477841
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.3054

Способ формирования спиновых волн

Изобретение относится к способам формирования квантовых коллективных возбуждений спиновой плотности и плотности намагниченности в графеновых пленках и может быть использовано в квантовой наноэлектронике, спинтронике, системах обработки и хранения информации терагерцового диапазона. Согласно...
Тип: Изобретение
Номер охранного документа: 0002477907
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.305b

Модулятор лазерного излучения

Изобретение относится к оптоэлектронике и приборостроению. Заявленный модулятор лазерного излучения содержит лазер, рельефную дифракционную решетку с прямоугольным профилем, зеркально отражающую пучок модулируемого лазерного излучения, глубина которой превышает четверть длины волны...
Тип: Изобретение
Номер охранного документа: 0002477914
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.3326

Способ получения производных 5,8,9,10-тетрагидропиримидо[4,5-d]азоцинов, имеющих в 4-м положении трифлатную, вторичную и третичную аминогруппы

Изобретение относится к получению новых производных 5,8,9,10-тетрагидропиримидо[4,5-d]азоцинов, имеющих в 4-м положении трифлатную, вторичную и третичную аминогруппы общей формулы, указанной ниже. Соединения при первичном скрининге проявили себя в качестве ингибиторов ацетил- и...
Тип: Изобретение
Номер охранного документа: 0002478637
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34d7

Светодиодный источник света

Изобретение относится к электронике и энергосберегающим технологиям, а именно к конструкции светодиодов. Светодиодный источник света содержит пленочные полупроводниковые слои, нанесенные на токопроводяшую подложку, служащую одним из электродов, имеющие поликристаллическую структуру с...
Тип: Изобретение
Номер охранного документа: 0002479070
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.37c8

Способ локализации неоднородностей металлической поверхности в инфракрасном излучении

Изобретение относится к оптическим методам контроля качества поверхностей металлов и полупроводников. Способ включает воздействие на поверхность зондирующим излучением, для которого металл имеет отрицательную действительную часть диэлектрической проницаемости, преобразование излучения в набор...
Тип: Изобретение
Номер охранного документа: 0002479833
Дата охранного документа: 20.04.2013
Showing 1-10 of 38 items.
20.02.2013
№216.012.26f5

Активирующий люминесценцию белка гидридный комплекс

Изобретение относится к области биосенсорики и может быть использовано для изучения белков методом люминесценции. Обработкой ультразвуком белка, содержащего ароматические аминокислоты, в физиологическом растворе в присутствии фосфора YHrVO или YЕrYОСl, получают активирующий люминесценцию белка...
Тип: Изобретение
Номер охранного документа: 0002475493
Дата охранного документа: 20.02.2013
20.03.2013
№216.012.3012

Инфракрасный амплитудно-фазовый плазмонный спектрометр

Изобретение относится к инфракрасной спектроскопии поверхностей металлов и полупроводников. Спектрометр содержит перестраиваемый по частоте источник p-поляризованного монохроматического излучения, элемент преобразования излучения источника в поверхностные плазмоны (ПП), твердотельный проводящий...
Тип: Изобретение
Номер охранного документа: 0002477841
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.3013

Плазмонный фурье-спектрометр терагерцового диапазона

Изобретение относится к оптическим методам исследования поверхности металлов и полупроводников. Спектрометр содержит источник объемного излучения, светоделитель, расщепляющий излучение на измерительный и реперный пучки, зеркало, твердотельный проводящий образец с двумя сопряженными скругленным...
Тип: Изобретение
Номер охранного документа: 0002477842
Дата охранного документа: 20.03.2013
20.04.2013
№216.012.37c8

Способ локализации неоднородностей металлической поверхности в инфракрасном излучении

Изобретение относится к оптическим методам контроля качества поверхностей металлов и полупроводников. Способ включает воздействие на поверхность зондирующим излучением, для которого металл имеет отрицательную действительную часть диэлектрической проницаемости, преобразование излучения в набор...
Тип: Изобретение
Номер охранного документа: 0002479833
Дата охранного документа: 20.04.2013
27.08.2013
№216.012.651d

Способ определения набега фазы монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к оптическим методам контроля проводящей поверхности в инфракрасном (ИК) излучении и может быть использовано в физико-химических исследованиях динамики роста переходного слоя поверхности, в технологических процессах для контроля толщины и однородности тонкослойных покрытий...
Тип: Изобретение
Номер охранного документа: 0002491522
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6528

Способ определения глубины проникновения поля терагерцовых поверхностных плазмонов в окружающую среду

Изобретение относится к оптическим методам контроля поверхности металлов и полупроводников в терагерцовом диапазоне спектра и может найти применение в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек, в...
Тип: Изобретение
Номер охранного документа: 0002491533
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.655e

Способ управления спектром пучка широкополосного терагерцового излучения

Изобретение относится к оптике дальнего инфракрасного (ИК) и терагерцового (ТГц) диапазонов и может найти применение в установках, содержащих широкополосные источники ТГц-излучения, в ТГц плазменной и фурье-спектроскопии проводящей поверхности и тонких слоев на ней, в перестраиваемых фильтрах...
Тип: Изобретение
Номер охранного документа: 0002491587
Дата охранного документа: 27.08.2013
10.04.2014
№216.012.b754

Способ измерения длины распространения инфракрасных поверхностных плазмонов по реальной поверхности

Изобретение относится к области бесконтактного исследования поверхности металлов оптическими методами, а именно к способу измерения длины распространения поверхностных плазмонов, направляемых этой поверхностью. Способ включает измерение интенсивности излучения вдоль трека плазмонов и расчет...
Тип: Изобретение
Номер охранного документа: 0002512659
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.de9d

Способ пассивной локализации ребер прямоугольного металлического параллелепипеда в инфракрасном излучении

Изобретение относится к бесконтактным пассивным методам обнаружения и локализации металлических объектов в инфракрасном (ИК) излучении, а именно к локализации металлических тел в форме прямоугольного параллелепипеда путем регистрации излучаемого ими теплового ИК-излучения, и может найти...
Тип: Изобретение
Номер охранного документа: 0002522775
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.ee8d

Способ сопряжения набора вторичных плазмон-поляритонных каналов связи терагерцового диапазона с основным каналом

Изобретение относится к области средств коммуникации, в которых перенос информации осуществляется поверхностными электромагнитными волнами, точнее поверхностными плазмон-поляритонами (ППП) терагерцового (ТГц) диапазона, направляемыми плоской поверхностью проводящей подложки, и может найти...
Тип: Изобретение
Номер охранного документа: 0002526888
Дата охранного документа: 27.08.2014
+ добавить свой РИД