×
20.07.2013
216.012.57fc

Результат интеллектуальной деятельности: МОБИЛЬНЫЙ ГЕНЕРАТОР ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ И ТОКОВ

Вид РИД

Изобретение

№ охранного документа
0002488132
Дата охранного документа
20.07.2013
Аннотация: Изобретение относится к прикладной электротехнике. Более конкретно, мобильный генератор импульсных напряжений и токов (М-ГИН) относится к приборам испытания различного электротехнического оборудования и их систем молниезащиты на грозоупорность. Характеристики М-ГИН позволяют создавать в полевых условиях полномасштабные импульсы тока, аналогичные токам, возникающим в оборудовании и грунтах контуров заземления от попадания молнии. Изобретение позволяет получить технический результат - создать мобильные лаборатории для испытаний согласно регламентам проектируемого, действующего и вновь устанавливаемого высоковольтного оборудования, оборудования космических комплексов наземного и морского базирования, средств связи и других объектов непосредственно на их рабочих местах, т.е. без доставки оборудования на специализированные испытательные стенды. 11 з.п. ф-лы, 3 ил.

Область техники, к которой относится изобретение

Изобретение относится к прикладной электротехнике. Более конкретно, мобильный генератор импульсных напряжений и токов (М-ГИН) относится к приборам испытания электротехнического оборудования и их систем молниезащиты. Характеристики М-ГИН позволяют создавать в полевых условиях полномасштабные импульсы тока, аналогичные токам, возникающим в оборудовании и грунтах контуров заземления от попадания молнии.

М-ГИН позволяет создать мобильные лаборатории для испытаний согласно регламентам проектируемого, действующего и вновь устанавливаемого высоковольтного оборудования, оборудования космических комплексов наземного и морского базирования, средств связи и других объектов непосредственно на их рабочих местах, т.е. без демонтажа и доставки оборудования на специализированные испытательные стенды.

Уровень техники

В настоящее время для испытания оборудования на предмет определения степени надежности молниезащиты объекта (грозоупорности) производят расчленение оборудования на отдельные компоненты, которые транспортируются и испытываются отдельно друг от друга на специализированных испытательных стендах. Как правило, регламентом требуются полномасштабные испытания молниезащиты оборудования, что можно сделать только в стационарных условиях в нескольких специализированных испытательных центрах в мире. В этих центрах для генерации импульса высокого напряжения, который создавал бы импульсы тока в оборудовании, аналогичные токам от прямого удара природной молнии, применяют мощные генераторы импульсных напряжений (ГИН) с энергией больше 1 МДж. Стационарные ГИН имеют большие размеры и массу, порядка 50 т и более [1-11]. Для мобильных средств испытания схемно-конструктивные решения этих ГИН не приемлемы. Мобильные лаборатории для полномасштабных испытаний систем молниезащиты по этой причине отсутствуют, в результате чего отсутствуют базы данных о растекании импульсных токов в реальных контурах заземления, отсутствуют расчетные формулы и методики. Существующие на сегодняшний день методики для расчета импульсных токов молнии имеют неприемлемо большую погрешность. Как свидетельствует опыт эксплуатации, доля грозовых отключений составляет от 20 до 50% общего числа отключений воздушных линий электропередачи (ВЛ). Грозовые отключения негативно сказываются на эксплуатации, как самих линий, так и подстанционного оборудования, снижая ресурс работы выключателей, вторичной аппаратуры и т.д.

Ближайшим прототипом ГИН является патентованное изобретение [3], см. Фиг.1. ГИН состоит из металлического корпуса 1, заполненного трансформаторным маслом, компенсатора объема 2, крышки корпуса 3. Выходной импульс напряжения выведен через разъемное соединение 5, имеющее пояс Роговского 4. ГИН имеет высоковольтный ввод 7 для зарядки конденсаторов, и электрический ввод 6 для управляющих электродов разрядников. Этот ГИН массой около 1 т имеет максимальное выходное напряжение 1,2 MB и максимальную запасаемую им энергию 1 кДж. Такие параметры не позволяют полномасштабно имитировать токи от удара молнии. Других транспортируемых ГИН, но с большими параметрами по напряжению и энергии в импульсе нет.

Сущность изобретения

Электрическая схема М-ГИН выполнена по схеме Аркадьева-Маркса каскадного умножения напряжения с некоторыми дополнениями. В отличие от прототипа [3] М-ГИН обладает мобильностью и большими параметрами по напряжению и энергии в импульсе, см. Фиг.2. М-ГИН в рабочем положении устанавливается вертикально. М-ГИН состоит из корпуса 1 из диэлектрического материала с развитой наружной поверхностью, препятствующей поверхностному пробою. В корпусе 1 размещены конденсаторы 5 и резисторы 4, укрепленные между диэлектрическими пластинами 2 и 7. Пластины 2 и 7 образуют одинаковые по форме и содержанию коробки в виде дисков, которые в свою очередь укреплены слоями на центральной, несущей весовую и динамическую нагрузки, опорной трубе 8 или соединены между собой штангами 12 из диэлектрического материала. Опорная труба 8 выполнена из диэлектрика, внутрь которой, например, выведены клеммы 13 разъемов для подключения ответных клемм 14 от разрядников 15. Каждый разрядник 15 подсоединяется к соответствующей батарее конденсаторов 5. Корпус 1 генератора установлен на опорном основании 16. Выходной импульс напряжения выводится на электрод 10, который расположен на патрубке 11 на расстоянии от земли, которое исключает пробой. Опорная труба 8 герметично соединена с одной стороны с опорным основанием 16 и с другой стороны через подвижное соосное уплотнение с люком 9 в верхней части корпуса таким образом, что объемы корпуса и патрубка герметично отделены от объема опорной трубы. В опорной трубе 8 установлен блок разрядников 15 внутри трубы, на которой имеются клеммы 14, соединяющиеся с заданным усилием с помощью управляемых зажимов с соответствующими клеммами 13 от батарей конденсаторов 5. В походном положении на транспортном средстве М-ГИН находится на ложементе 17 горизонтально, см. Фиг.3.

От известных конструкций генераторов импульсных токов [1-11], М-ГИН имеет следующие отличия:

- корпус 1, см. Фиг.2, соединен фланцем с опорным основанием 16, выполнен герметичным из диэлектрического материала и имеет наружную поверхность, форма которой препятствует поверхностному пробою;

- в рабочем состоянии на поверхности земли корпус помещен на опорном основании и имеет в верхней части для вывода электрического импульса электрод 10, который укреплен на конце патрубка 11, соединенного с корпусом 1 и электродом 10 герметично;

- патрубок 11 выполнен из диэлектрического материала и имеет наружную поверхность, форма которой препятствует поверхностному пробою;

- в корпусе конденсаторы 5 и резисторы 4 (элементы генератора) размещены в плоских одинаковых коробках (например, для цилиндрической формы корпуса в виде дисков) между пластинами 2 и 7 из прочного диэлектрического материала, которые вместе с коробкой являются прозрачными для перемещения газообразного диэлектрика, которым заполнен внутренний объем корпуса и патрубка;

- коробки (диски) с элементами генератора через их сквозные отверстия соосно вдоль продольной оси корпуса укреплены на опорной трубе, которая герметично соединена с одной стороны с опорным основанием 16 и с другой стороны через подвижное соосное уплотнение с люком 9 в корпусе 1 таким образом, что внутренний объем опорной трубы отделен от внутреннего объема корпуса;

- пластины 2, 7 из прочного диэлектрического материала в коробках (дисках) по их периметру имеют пневматически (гидравлически) управляемые распоры 3, которые обеспечивают фиксацию элементов генератора и равномерное распределение нагрузки от них на внутреннюю цилиндрическую поверхность корпуса 1 во время транспортировки и установки в вертикальное положение;

- в опорной трубе 8 помещен пакет разрядников 15, имеющий форму цилиндра с выступающими на его поверхности по винтовой линии контактами 14 разъемов от клемм подключения разрядников 15;

- в сквозных отверстиях коробок имеются ответные к пакету разрядников контакты 13 разъемов, которые, за счет поворота на заданный угол одинаковых коробок (дисков) относительно оси их сквозных отверстий, расположены по винтовой линии, аналогичной как у пакета разрядников, таким образом, чтобы было возможным устанавливать пакет разрядников в опорную трубу 8 через люк 9 в корпусе 1 без удаления из объема корпуса газообразного диэлектрика;

- ответные (одноименные) контакты разъемов от разрядников и коробок соединяются через промежуточные клеммы (электроды), которые герметично встроены в стенку опорной трубы, контакты разъемов имеют пневматические или гидравлические зажимы, сжимающие клеммы с таким усилием, которое обеспечит требуемый контакт для протекания максимального тока разряда конденсаторов;

- ответные к пакету разрядников контакты соединены с конденсаторами и резисторами в коробке (диске) таким образом, что в момент срабатывания разрядников цепочка параллельно включенных для зарядки конденсаторов во всех коробках (дисках) перестраивается в цепочку последовательно включенных конденсаторов заданной общей емкости;

- внутренние объемы корпуса генератора с патрубком, опорной трубы и пакета разрядников выполнены таким образом, который позволяет раздельно заполнять и регулировать в этих объемах давление газообразного диэлектрика со стороны основания генератора;

- пакет разрядников обладает как минимум двумя модификациями включения разрядников: электрическим потенциалом и лучем лазера, направленным по осевому каналу между электродами всех разрядников в пакете;

- в рабочем положении генератор находится относительно продольной оси его корпуса 1 вертикально и электрод 10 выходного напряжения за счет необходимой длины патрубка 11 расположен от заземленного основания 16 корпуса на таком изоляционном промежутке, который исключает пробой импульсом максимального напряжения, вырабатываемого генератором;

- в походном положении, см. Фиг.3, на транспортном средстве генератор находится относительно продольной оси корпуса горизонтально на ложементе 17;

- ложемент имеет подъемный механизм и пневматически управляемые захваты корпуса генератора такой конструкции, которая исключает подвижность корпуса генератора относительно ложемента, повреждение наружной поверхности корпуса при транспортировке и установке генератора в вертикальное положение.

Промышленная применимость

М-ГИН может быть применен для получения банка данных:

- по импульсным электрическим характеристикам грунтов, зданий, сооружений, водных и воздушных судов при прямых ударах молнии;

- об электрической прочности линейной изоляции линий электропередачи при воздействии широкого спектра грозовых перенапряжений;

- о надежности защиты от прямых ударов молнии сложных систем молниеотводов;

- и других данных, необходимых для расчетов и надежной работы систем молниезащиты оборудования.

Список литературы

1. Кремнев В.В., Месяц Г.А. Методы умножения и трансформации импульсов в сильноточной электротехнике. - Новосибирск: Наука, 1987.

2. Патент RU 2374762 С1, приоритет 29.10.2008. Генератор импульсного напряжения. Патентообладатель: Третьяков Д.В. (RU).

3. Патент RU 2317637 С1, приоритет 11.07.2006. Генератор импульсного напряжения. Патентообладатель: ФГУП "РФЯЦ-ВНИИЭФ" (RU).

4. Патент RU 2351064 С1, приоритет 11.07.2007. Способ рекуперации электрической энергии в импульсных установках и устройство для его осуществления. Патентообладатель: Институт физики им. Л.В.Киренского Сибирского отделения РАН (RU).

5. Патент RU 2265952 С1, приоритет 16.03.2004. Устройство магнитного сжатия и умножения напряжения импульса. Патентообладатель: Государственное образовательное учреждения высшего профессионального образования "Красноярский государственный университет", (RU).

6. Патент RU 2097909 С1, приоритет 04.07.1994. Высоковольтный импульсный источник питания (варианты). Патентообладатель: Государственное предприятие Специальное конструкторское бюро научного приборостроения, (RU).

7. Заявка RU 2003124684 A1, приоритет 07.08.2003. Генератор высоковольтных импульсов. Заявитель: Российская Федерация в лице Министерства по атомной энергии - Минатома РФ (RU) и ФГУП "РФЯЦ-ВНИИЭФ" (RU).

8. Заявка RU 95106732 A1, приоритет 26.04.1995. Устройство для имитации токов молнии. Патентообладатель (засекр.). Заявитель: Центральный физико-технический институт Министерства обороны Российской Федерации.

9. Патент SU 813722 A1, приоритет 26.02.1979. Многоступенчатый генератор импульсных напряжений. Патентообладатель: предприятие п/я Р-6511, (RU).

10. Патент SU 824413 A1, приоритет 31.01.1978. ГЕНЕРАТОР ИМПУЛЬСНЫХ ТОКОВ. Патентообладатель: Институт электродинамики АН Украинской ССР.

11. Патент RU 2185021 С1, приоритет 27.02.2001. Бестрансформаторный высоковольтный генератор импульсов. Патентообладатель: Всероссийский научно-исследовательский институт автоматики, (RU).


МОБИЛЬНЫЙ ГЕНЕРАТОР ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ И ТОКОВ
МОБИЛЬНЫЙ ГЕНЕРАТОР ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ И ТОКОВ
МОБИЛЬНЫЙ ГЕНЕРАТОР ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ И ТОКОВ
Источник поступления информации: Роспатент

Showing 11-12 of 12 items.
10.08.2016
№216.015.5546

Шаровой клапан

Изобретение относится к шаровым клапанам и предназначено для подачи и отсечки как высокотемпературных, так и низкотемпературных газов, в частности, в пневмосистемах летательных аппаратов. В корпусе 1 шарового клапана установлен шаровой затвор 2, взаимодействующий с двух сторон с металлическими...
Тип: Изобретение
Номер охранного документа: 0002593730
Дата охранного документа: 10.08.2016
04.04.2018
№218.016.3270

Способ распределения нагрузки между параллельно работающими судовыми дизель-генераторными агрегатами

Изобретение относится к области энергетики, а именно к средствам распределения нагрузки между параллельно работающими судовыми дизель-генераторными агрегатами. Способ позволяет оптимально загрузить агрегаты и сократить удельный расход топлива (УРТ) при их работе. Сущность указанного способа...
Тип: Изобретение
Номер охранного документа: 0002645387
Дата охранного документа: 21.02.2018
Showing 21-24 of 24 items.
06.06.2023
№223.018.7884

Жидкостный ракетный двигатель с электронасосной системой подачи

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель (ЖРД) с электронасосной системой подачи низкокипящих компонентов топлива, включающий регенеративно охлаждаемую камеру сгорания, электронасосные агрегаты для подачи компонентов топлива в камеру, блок питания электронасосных...
Тип: Изобретение
Номер охранного документа: 0002760956
Дата охранного документа: 01.12.2021
06.06.2023
№223.018.78d3

Космическая энергетическая установка с машинным преобразованием энергии

Изобретение относится к объектам энергетического машиностроения. Космическая энергетическая установка с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом, реализующим термодинамический цикл Брайтона, в состав которого входит источник тепла, компрессор,...
Тип: Изобретение
Номер охранного документа: 0002757148
Дата охранного документа: 11.10.2021
06.06.2023
№223.018.78d9

Энергетическая установка с машинным преобразованием энергии

Энергоустановка содержит электрогенератор (ЭГ) (1), кинематически связанный с турбокомпрессором (ТК) (2) со стороны входа в компрессор, источник тепла (4), регенератор тепла (5), теплообменник-холодильник (6) системы отвода низкопотенциального тепла из рабочего контура жидким теплоносителем,...
Тип: Изобретение
Номер охранного документа: 0002757147
Дата охранного документа: 11.10.2021
06.06.2023
№223.018.78dd

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель включает бустерные насосные агрегаты, турбонасосный агрегат, камеру и газогенератор, при этом в состав двигателя включена автономная аккумуляторная батарея, приводы бустерных насосов выполнены в виде синхронных...
Тип: Изобретение
Номер охранного документа: 0002757145
Дата охранного документа: 11.10.2021
+ добавить свой РИД