×
20.06.2013
216.012.4c48

Результат интеллектуальной деятельности: 4-(2,3-ЭПОКСИПРОПОКСИ)ФЕНИЛОВЫЙ ЭФИР 4-ПРОПИЛОКСИБЕНЗОЙНОЙ КИСЛОТЫ, ПРОЯВЛЯЮЩИЙ СВОЙСТВА СВЕТОТЕРМОСТАБИЛИЗАТОРА ПОЛИВИНИЛХЛОРИДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к новому химическому соединению 4-(2,3-эпоксипропокси)фениловому эфиру 4-пропилоксибензойной кислоты. Данное соединение проявляет свойства светотермостабилизатора поливинилхлорида и имеет приведенную ниже структурную формулу. Использование этого соединения в качестве светотермостабилизатора поливинилхлорида позволяет перерабатывать этот полимер без его разложения и обеспечить более высокие характеристики полимерных пленок при их эксплуатации как по прочностным свойствам, так и по эластичности. 2 табл. 1 пр.
Основные результаты: 4-(2,3-эпоксипропокси)фениловый эфир 4-пропилоксибензойной кислоты, проявляющий свойства светотермостабилизатора поливинилхлорида.

Изобретение относится к химической промышленности, а именно к получению 4-(2,3-эпоксипропокси)фенилового эфира 4-пропилоксибензойной кислоты, который может быть использован в качестве светотермостабилизатора поливинилхлорида.

Уровень техники

Поливинилхлорид является одним из самых многотоннажных полимеров, который широко применяется для изготовления труб и фитингов, формованных деталей и профилей, мягких и жестких пленок и пластин, кабелей и проводов, тары и упаковки, покрытий для пола, стен и крыш, гибких шлангов и профилей, пластизольных изделий, одежды и обуви, товаров для спорта и отдыха, бытового оборудования, мебели и канцелярских принадлежностей, изделий для электро-, радио-, электронной и медицинской отраслей и многого другого.

В то же время поливинилхлорид крайне неустойчив к воздействиям тепла, света, проникающей радиации, механических нагрузок, биологически активных сред. Под влиянием перечисленных факторов протекают разнообразные превращения, приводящие к изменению окраски полимера, существенному ухудшению физико-механических, диэлектрических, оптических и других эксплуатационных свойств поливинилхлоридных материалов. Поэтому изготовление и применение поливинилхлорида неразрывно связано с разработкой необходимых систем стабилизаторов, предохраняющих полимер от различных видов деструкции, главным образом, в процессе переработки.

Поливинилхлорид до недавнего времени стабилизировали стеаратами кальция, цинка, кадмия, олова, свинца, а также их синергическими смесями, например, с эпоксисодержащими продуктами. На настоящий момент в связи с высокой токсичностью запрещены к применению кадмий-, олово-, свинецсодержащие стабилизаторы. В связи с этим успех в области разработки стабилизаторов поливинилхлорида может быть достигнут за счет перехода к новым органическим безметальным полифункциональным добавкам, к которым относятся анизотропные соединения, способные к сильным специфическим взаимодействиям с макромолекулами полимера.

Известно, что эпоксидные соединения, содержащие в молекуле трехчленное гетероциклическое оксирановое кольцо, применяют как светостабилизаторы поливинилхлорида [И.Фойгт. Стабилизация синтетических полимеров против действия света и тепла. Л.: Химия, 1972. 544]. Это могут быть эпоксидированные углеводороды, простые и сложные эпоксиэфиры, эпоксидированные масла, эпоксидные смолы.

Наиболее широко применяемой в качестве стабилизатора поливинилхлорида является эпоксидная смола ЭД-20 [Саммерс Дж., Уилки Ч., Даниэле Ч. Поливинилхлорид. Под ред. Г.Е.Заикова. СПб.: Профессия, 2007. 728 с.]. Это достаточно эффективный светостабилизатор. Однако она не проявляет термостабилизирующего действия и используется только в смеси с солями органических кислот, а именно стеаратами кальция, бария или кадмия, свинцовыми или оловосодержащими стабилизаторами, что усложняет рецептуру композиции и удорожает материал, повышает его токсичность при использовании соединений кадмия, олова или свинца. Кроме этого эпоксидная смола ЭД-20 окрашивает полимерный материал в розовато-коричневый цвет, что делает невозможным ее использование для неокрашенных материалов и материалов белого цвета.

Известен 4-(2,3-эпоксипропокси)-4′-формилазобензол, проявляющий свойства стабилизатора поливинилхлорида [Дм. Фокин, С.А.Кувшинова, В.А.Бурмистров, О.И.Койфман. Мезогенные модификаторы для поливинилхлорида. Жидкие кристаллы и их практическое использование. 2009. №2 (28). С.78-88]. Это соединение также содержит в структуре эпоксидную группу, проявляет свойства и свето-, и термостабилизатора и не требует для проявления этих свойств присутствия в композиции стеаратов кальция, кадмия, цинка, бария, олово- или свинецсодержащих стабилизаторов. Однако это соединение проявляет недостаточно высокую светотермостабилизирующую эффективность и окрашивает полимерный материал в оранжевый цвет, что делает невозможным его использование для получения неокрашенных материалов и материалов белого цвета.

Известен 4-(2,3-эпоксипропокси)-4′-пропилоксиазобензол, проявляющий свойства стабилизатора поливинилхлорида [С.А.Кувшинова, В.А.Бурмистров, О.И.Койфман. 4-(2,3-эпоксипропокси)-4′-пропилоксиазобензол, проявляющий свойства светотермостабилизатора поливинилхлорида. Патент РФ №2284318, опубл. БИ №27 от 27.09.2006]. Это соединение также содержит в структуре эпоксидную группу, проявляет свойства и свето-, и термостабилизатора и не требует для проявления этих свойств присутствия в композиции стеаратов кальция, кадмия, цинка, бария, олово- или свинецсодержащих стабилизаторов. Однако это соединение проявляет недостаточно высокую светотермостабилизирующую эффективность и окрашивает полимерный материал в оранжевый цвет, что делает невозможным его использование для получения неокрашенных материалов и материалов белого цвета.

Известны 4-(2,3-эпоксипропокси)-4′-алкилоксиазоксибензолы, которые можно использовать в качестве стабилизаторов полимерных композиций на основе поливинилхлорида [С.А.Кувшинова, В.А.Бурмистров, О.И.Койфман. Композиция на основе поливинилхлорида. Патент РФ №2284341, опубл. БИ №27 от 27.09.2006]. Эти соединения также содержат в структуре эпоксидную группу, проявляют свойства и свето-, и термостабилизаторов и не требуют для проявления этих свойств присутствия в композиции стеаратов кальция, кадмия, цинка, бария, олово- или свинецсодержащих стабилизаторов. Однако эти соединения проявляют недостаточно высокую светотермостабилизирующую эффективность и окрашивают полимерный материал в желтый цвет, что делает невозможным их использование для получения неокрашенных материалов и материалов белого цвета.

Известен 4,4′-ди-(2,3-эпоксипропокси)-дифенил, который может быть использован в композициях на основе поливинилхлорида в качестве стабилизатора [С.А.Кувшинова, В.А.Бурмистров, О.И.Койфман. Композиция на основе поливинилхлорида. Патент РФ №2313543, опубл. БИ №36 от 27.12.2007]. Это соединение также содержит в структуре эпоксидную группу, проявляет свойства и свето-, и термостабилизатора и не требует для проявления этих свойств присутствия в композиции стеаратов кальция, кадмия, цинка, бария, олово- или свинецсодержащих стабилизаторов. Это соединение представляет собой порошок белого цвета и может быть использован для получения неокрашенных материалов и материалов белого цвета. Однако это соединение проявляет недостаточно высокую светотермостабилизирующую эффективность.

Наиболее близким структурным аналогом заявленного соединения является 4-(2,3-эпоксипропокси)-4′-цианобифенил [С.А.Кувшинова, В.А.Бурмистров, А.Е.Алтунина, О.И.Койфман. 4-(2,3-эпоксипропокси)-4′-цианобифенил, проявляющий свойства светотермостабилизатора поливинилхлорида. Патент РФ №2313518, опубл. БИ №36 от 27.12.2007]. Это соединение также содержит в структуре эпоксидную группу, проявляет свойства и свето-, и термостабилизатора и не требует для проявления этих свойств присутствия в композиции стеаратов кальция, кадмия, цинка, бария, олово- или свинецсодержащих стабилизаторов. Это соединение представляет собой порошок белого цвета и может быть использовано для получения неокрашенных материалов и материалов белого цвета. Однако это соединение проявляет недостаточно высокую светотермостабилизирующую эффективность.

Сущность изобретения

Изобретательская задача состояла в поиске нового химического соединения, содержащего эпоксидную группу, проявляющего одновременно свойства и свето-, и термостабилизатора поливинилхлорида, не требующего для проявления этих свойств присутствия стеаратов кальция, бария, цинка, кадмия, олово- или свинецсодержащих стабилизаторов, позволяющего использовать его для неокрашенных материалов и материалов белого цвета и которое позволило бы при его использовании в качестве светотермостабилизатора повысить устойчивость поливинилхлорида к воздействию ультрафиолетового излучения и повышенных температур при переработке и эксплуатации.

Поставленная задача решена соединением 4-(2,3-эпоксипропокси)фенилового эфира 4-пропилоксибензойной кислоты формулы:

Строение заявляемого соединения доказано методами элементного анализа и спектроскопии ЯМР 1Н.

В спектре ЯМР 1Н 4-(2,3-эпоксипропокси)фенилового эфира 4-пропилоксибензойной кислоты в хлороформе-Д наблюдаются резонансные сигналы ароматических протонов (приведены химические сдвиги в м.д. относительно тетраметилсилоксана) 6,90д (2Н); 7,04д (2Н); 7,17д (2Н); 8,11д (2Н); пропилоксигруппы 0,96т (3Н); 1,57д (2Н); 2,64д (2Н); эпоксигруппы 4,01д (2Н); 3,13т (1Н); 2,64т (2Н).

Использование заявленного соединения в качестве светотермостабилизатора поливинилхлорида позволяет перерабатывать этот полимер без его разложения и обеспечить более высокие по сравнению с прототипом характеристики полимерных пленок при их эксплуатации как по прочностным свойствам, так и по эластичности.

Кроме этого изобретение позволяет получить следующие дополнительные преимущества:

- заявляемое соединение имеет на 18,6% выше температуру начала разложения по сравнению с прототипом, что позволяет более длительное время вальцевать полимерную композицию для получения более однородного материала, перерабатывать поливинилхлорид методом экструзии и получать полимерные гранулы, эксплуатировать изделия из полученных материалов при более высоких температурах и в течение более длительного времени без ухудшения их прочностных характеристик и внешнего вида;

- синтез заявляемого соединения значительно короче по времени, аппаратурному оформлению и менее трудоемок по сравнению с прототипом;

- для синтеза заявляемого соединения требуются значительно более дешевые и доступные реагенты, чем для синтеза прототипа.

Сведения, подтверждающие возможность воспроизведения изобретения

Для синтеза 4-(2,3-эпоксипропокси)фенилового эфира 4-пропилоксибензойной кислоты и приготовления полимерной композиции используют следующие вещества:

1. 4-гидроксибензойная кислота ТУ 6-09-3646-74

2. Гидроокись натрия ГОСТ 11078-78

3. Диметилформамид ГОСТ 20289-74

4. Пропил бромистый ТУ 6-09-975-76

5. Этанол ГОСТ 10749.3-80

6. Тионилхлорид Fluka Lot & Filling code: 1122903 13904042

7. Гидрохинон ГОСТ 19627-74

8. Пиридин ГОСТ 13647-78

9. Эпихлоргидрин ГОСТ 12844-74

10. Поливинилхлорид С-70 ГОСТ 14332-78

11. Диоктилфталат ГОСТ 8728-77

Заявленное соединение получают следующим образом.

Стадия 1. Смесь 13,8 г (0,1 моль) 4-гидроксибензойной кислоты, 8,0 г (0,2 моль) гидроокиси натрия, 12,3 г (0,1 моль) бромистого пропила в 150 мл диметилформамида перемешивают при 105-110°C 2,5 ч. Реакционную смесь выливают в 300 мл ледяной воды. Выпавший осадок отфильтровывают, промывают водой, перекристаллизовывают из этанола. Получают 4-пропилоксибензойную кислоту. Выход 15,7 г (87%). Тпл=145°C.

Стадия 2. Смесь 18,0 г (0,1 моль) 4-пропилоксибензойной кислоты и 30 г (0,25 моль) тионилхлорида выдерживают при 65-70°C 3 ч. Избыток тионилхлорида отгоняют. Получают хлорангидрид 4-пропилоксибензойной кислоты. Выход 19,9 г (100%).

Стадия 3. К раствору 55 г (0,5 моль) гидрохинона в 200 мл пиридина добавляют по каплям в течение 1,5-2,0 часов раствор 19,9 г (0,1 моль) свежесинтезированного хлорангидрида 4-пропилоксибензойной кислоты в 50 мл пиридина. Реакционную смесь перемешивают при 28-30°C 24 часа, выливают в 1 л ледяной воды, подкисленной 5%-ным раствором соляной кислоты до рН 5. Выпавший осадок отфильтровывают, промывают водой, перекристаллизовывают из этанола. Получают 4-гидроксифениловый эфир 4-пропилоксибензойной кислоты. Выход 25,1 г (92%). Тпл=134°C.

Стадия 4. Смесь 27,2 г (0,1 моль) 4-гидроксифенилового эфира 4-пропилоксибензойной кислоты, 8,0 г (0,2 моль) гидроокиси натрия и 277,5 г (3 моль) эпихлоргидрина перемешивают при 60-65°C 5 часов. Реакционную смесь охлаждают и отфильтровывают от примесей. Фильтрат выпаривают досуха, твердый осадок дважды перекристаллизовывают из этанола. Получают целевой продукт 4-(2,3-эпоксипропокси)фениловый эфир 4-пропилоксибензойной кислоты. Выход 24,9 г (76%). Тпл=40°C. Найдено (%): С 68,34; Н 5,64; О 26.02. Вычислено (%): С 69,51; Н 6,10; О 24,39.

Пример 1. Использование заявленного соединения в качестве свето- и термостабилизатора поливинилхлорида.

Поливинилхлорид смешивают с пластификатором диоктилфталатом и заявленным соединением в качестве стабилизатора, помещают в емкость и оставляют смесь набухать в термошкафу при 120°C в течение 30 мин. Затем смесь загружают на лабораторные вальцы и вальцуют при 150°C. Из развальцованной смеси вырезают пластины и прессуют при 160°C и давлении 5 МПа в течение 4 мин с последующим охлаждением в прессе. В процессе получения пленок из поливинилхлорида и последующего калибрования под давлением не обнаружено выпотевания и летучести стабилизатора.

Полученный образец помещают под лампу ДРТ-375 мощностью 375 Вт на расстояние 20 см. Светотепловое старение проводят при 70°C в течение 72 часов согласно ГОСТ 8979-75 «Кожа искусственная и пленочные материалы. Методы определения устойчивости к тепловому и светотепловому старению».

Из исходных (до старения) и подвергнутых старению пленок полимера вырезают образцы размером 100×10 мм. Стандартные образцы зажимают в зажимы разрывной машины РМ-30-1 и определяют нагрузку, при которой происходит разрыв образца Fi и приращение длины рабочего участка образца, измеренное в момент его разрыва Δli, по ГОСТ 14236-81 «Пленки полимерные. Метод испытания на растяжение».

Прочность при разрыве (разрушающее напряжение при растяжении) рассчитывают по формуле:

, где Fi - разрывная нагрузка, Ai - сечение образца.

Определяют среднее из 30 результатов.

Относительное удлинение (εр, %) при разрыве определяют по формуле:

, где li - начальный размер i-го образца.

Определяют среднее из 30 результатов.

Устойчивость к светотепловому старению определяют как процент сохранения свойства (σ и εр) после светотеплового старения.

Образцы сравнения с использованием в качестве стабилизатора 4-(2,3-эпоксипропокси)-4′-цианобифенила готовили и испытывали согласно тем же ГОСТ 8978-75 и ГОСТ 14236-81, как и для заявленного соединения.

В таблице 1 приведены примеры композиций на основе поливинилхлорида.

В таблице 2 приведены результаты испытания образцов на свето- и термостойкость.

Данные таблицы 2 с очевидностью подтверждают, что заявленное соединение при использовании его в качестве стабилизатора полимерных композиций на основе поливинилхлорида проявляет достаточно высокую светостабилизирующую и термостабилизирующую способность одновременно, не требуя при этом присутствия стеаратов кальция, бария, цинка, кадмия, олово- и свинецсодержащих стабилизаторов, и позволяет сохранить прочностные и эластичные характеристики полимерных пленок после старения.

Таблица 1
Рецептуры композиций на основе поливинилхлорида
Наименование ингредиентов Содержание ингредиентов, мас.ч.
1 2
ПВХ С-70 100 100
ДОФ 40 40
4-(2,3-эпоксипропокси)-4′-цианобифенил (прототип) 0,2 -
4-(2,3-эпоксипропокси) фениловый эфир 4-пропилоксибензойной кислоты - 0,2

Таблица 2
Результаты испытаний образцов на свето- и термостойкость
Показатель 1 2
Разрушающее напряжение при растяжении, МПа
- при нормальных условиях 21,8 22,0
- после светотеплового старения 23,1 26,8
Устойчивость к старению, % 106,0 122,1
Относительное удлинение при разрыве, %
- при нормальных условиях 190 195
- после светотеплового старения 210 226
Устойчивость к старению, % 110,5 122,6

4-(2,3-эпоксипропокси)фениловый эфир 4-пропилоксибензойной кислоты, проявляющий свойства светотермостабилизатора поливинилхлорида.
Источник поступления информации: Роспатент

Showing 31-34 of 34 items.
25.08.2017
№217.015.b305

Способ получения лантансодержащего металлоорганического каркасного соединения трёхмерной структуры на основе терефталевой кислоты

Изобретение относится к химической промышленности, а именно к получению лантансодержащего металлоорганического каркасного соединения формулы La(ВDС)(НO) трехмерной структуры на основе терефталевой кислоты, которое можно использовать в качестве катализатора различных процессов, в том числе...
Тип: Изобретение
Номер охранного документа: 0002613976
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.d0d8

Сорбент для газовой хроматографии

Изобретение относится к сорбентам для газовой хроматографии. Предложенный сорбент состоит из твердого носителя и медного комплекса в качестве стационарной фазы. В качестве медного комплекса сорбент содержит тетра(1',7',7'-триметилбицикло[2.2.1]гептано[2',3'-b]пиразинопорфиразин меди....
Тип: Изобретение
Номер охранного документа: 0002621337
Дата охранного документа: 02.06.2017
20.01.2018
№218.016.136f

Способ получения ди-н-бутоксифосфорилзамещенных порфиринатов кобальта

Изобретение относится к способу получения ди-н-бутоксифосфорилзамещенных порфиринатов кобальта. Способ включает взаимодействие металлопорфирина с фосфитом в присутствии катализатора и растворителя, нагревание реакционной смеси при перемешивании, очистку полученного продукта с использованием...
Тип: Изобретение
Номер охранного документа: 0002634481
Дата охранного документа: 31.10.2017
13.02.2018
№218.016.1eea

Сорбент для разделения диметилпиридинов методом газовой хроматографии

Изобретение относится к сорбенту для газовой хроматографии, который может быть использован для аналитического разделения диметилпиридинов. Заявленный сорбент состоит из твердого диатомитового носителя Chezasorb AW-HMDS, пропитанного 5% силикона ХЕ-60, и...
Тип: Изобретение
Номер охранного документа: 0002641116
Дата охранного документа: 16.01.2018
Showing 31-40 of 41 items.
27.07.2015
№216.013.65f6

Никелевый комплекс 5,10,15,20-тетракис[3',5'-ди(2"-метилбутилокси)фенил]-порфина, проявляющий свойство стационарной фазы для газовой хроматографии

Изобретение относится к никелевому комплексу 5,10,15,20-тетракис [3′,5′-ди-(2″-метилбутилокси)фенил]-порфина формулы: Изобретение позволяет получить никелевый комплекс, проявляющий свойство стационарной фазы для газовой хроматографии. 1 табл.
Тип: Изобретение
Номер охранного документа: 0002557655
Дата охранного документа: 27.07.2015
20.08.2016
№216.015.4a93

Способ адсорбционной очистки растительных масел

Изобретение относится к масложировой промышленности и может быть использовано для адсорбционной очистки растительных масел от свободных жирных кислот, перекисных соединений, а также катионов тяжелых металлов. Способ адсорбционной очистки растительных масел заключается в обработке его...
Тип: Изобретение
Номер охранного документа: 0002594529
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.9249

Способ регенерации экстракционной воды в производстве полиамида-6

Изобретение относится к химической промышленности, а именно к способу регенерации экстракционной воды в производстве полиамида-6 гидролитической полимеризацией капролактама. Способ заключается в том, что собирают экстракционную воду и охлаждают ее до температуры 6÷10°С с образованием суспензии...
Тип: Изобретение
Номер охранного документа: 0002605694
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.ab98

Гетерогенный катализатор окисления серосодержащих соединений

Изобретение относится к химической промышленности, а именно к получению катализаторов, в частности гетерогенных катализаторов на основе полимерного носителя и производного фталоцианина кобальта, который может быть использован в химической и нефтехимической промышленности для очистки сточных...
Тип: Изобретение
Номер охранного документа: 0002612255
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b305

Способ получения лантансодержащего металлоорганического каркасного соединения трёхмерной структуры на основе терефталевой кислоты

Изобретение относится к химической промышленности, а именно к получению лантансодержащего металлоорганического каркасного соединения формулы La(ВDС)(НO) трехмерной структуры на основе терефталевой кислоты, которое можно использовать в качестве катализатора различных процессов, в том числе...
Тип: Изобретение
Номер охранного документа: 0002613976
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.d0d8

Сорбент для газовой хроматографии

Изобретение относится к сорбентам для газовой хроматографии. Предложенный сорбент состоит из твердого носителя и медного комплекса в качестве стационарной фазы. В качестве медного комплекса сорбент содержит тетра(1',7',7'-триметилбицикло[2.2.1]гептано[2',3'-b]пиразинопорфиразин меди....
Тип: Изобретение
Номер охранного документа: 0002621337
Дата охранного документа: 02.06.2017
20.01.2018
№218.016.136f

Способ получения ди-н-бутоксифосфорилзамещенных порфиринатов кобальта

Изобретение относится к способу получения ди-н-бутоксифосфорилзамещенных порфиринатов кобальта. Способ включает взаимодействие металлопорфирина с фосфитом в присутствии катализатора и растворителя, нагревание реакционной смеси при перемешивании, очистку полученного продукта с использованием...
Тип: Изобретение
Номер охранного документа: 0002634481
Дата охранного документа: 31.10.2017
13.02.2018
№218.016.1eea

Сорбент для разделения диметилпиридинов методом газовой хроматографии

Изобретение относится к сорбенту для газовой хроматографии, который может быть использован для аналитического разделения диметилпиридинов. Заявленный сорбент состоит из твердого диатомитового носителя Chezasorb AW-HMDS, пропитанного 5% силикона ХЕ-60, и...
Тип: Изобретение
Номер охранного документа: 0002641116
Дата охранного документа: 16.01.2018
10.05.2018
№218.016.3a34

Способ получения динатриевой соли 2,4-ди(1-метоксиэтил)дейтеропорфирина-ix (димегина)

Изобретение относится к фармакологии, а именно к способу получения динатриевой соли 2,4-ди(1-метоксиэтил)дейтеропорфирина-IX (ДИМЕГИНА). Способ включает проведение щелочного гидролиза тетраметилового эфира гематопорфирина-IX (ТМГ) общей формулы с уксусной кислотой с получением реакционной...
Тип: Изобретение
Номер охранного документа: 0002647588
Дата охранного документа: 16.03.2018
30.05.2020
№220.018.228b

Ковалентные конъюгаты на основе фталоцианинов и метилфеофорбида а, способы их получения и использования в медицине

Изобретение относится к конъюгатам на основе макрогетероциклов тетрапиррольного типа, которые могут найти применение в тераностике - современном направлении в медицине, сочетающем терапию и диагностику онкологических заболеваний. Описан конъюгат общей формулы (I): где X = О, -ОСНСНСНО-; М =...
Тип: Изобретение
Номер охранного документа: 0002722309
Дата охранного документа: 28.05.2020
+ добавить свой РИД