×
10.06.2013
216.012.4896

Результат интеллектуальной деятельности: СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ТЕХНОЛОГИЧЕСКИХ И ПРОДУКТИВНЫХ РАСТВОРОВ И ПУЛЬП

Вид РИД

Изобретение

Аннотация: Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию редкоземельных элементов на сорбенте. В качестве сорбента используют амфолит с иминодиацетатными функциональными группами. Сорбцию проводят после предварительной нейтрализации или подкисления раствора до pH=4÷5 любым щелочным или кислым агентом с дальнейшим введением амфолита в полученную пульпу без отделения твердой части. Сорбцию осуществляют при соотношении амфолит:пульпа 1:50÷1:150, времени контакта фаз 3÷6 часов и в присутствии восстановителя. Техническим результатом является высокая эффективность способа за счет большей сорбционной емкости и избирательности амфолита. 5 табл., 5 пр.
Основные результаты: Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включающий сорбцию редкоземельных элементов на сорбенте, отличающийся тем, что в качестве сорбента используют амфолит с иминодиацетатными функциональными группами и сорбцию проводят после предварительной нейтрализации или подкисления раствора до pH=4÷5 любым щелочным или кислым агентом с дальнейшим введением амфолита в полученную пульпу без отделения твердой части, при соотношении амфолит:пульпа 1:50÷1:150, времени контакта фаз 3÷6 ч, в присутствии восстановителя.

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов (РЗЭ) при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов РЗЭ.

Сорбционное извлечение РЗЭ целесообразно использовать для первичного концентрирования из растворов с низким содержанием РЗЭ, особенно на фоне значительного количества солей (железо(III) и Al) в растворе. В этом случае используемые иониты должны обладать высокой емкостью и селективностью по отношению к РЗЭ.

Известен способ [Временный, технологический регламент производства полиуранатов аммония, ФГУП "ВНИИХТ", ЗАО "ДАЛУР", с.Уксянское, 2006], в котором извлечение РЗЭ из технологического раствора рН=0.5÷2.5 осуществляется путем сорбции на гелевом сульфокатионите КУ-2. Полученный после элюирования и осаждения концентрат содержит %: РЗЭ - 1; железо - 2,0÷2,2; алюминий - 15÷18; вода - 82. Далее предлагается стадия переосаждения с целью доведения чернового концентрата РЗМ до товарной продукции 30-40%.

Основными недостатками данного способа является малая сорбционная емкость и избирательность сульфокатионита по РЗЭ и неэффективная операция доведения чернового концентрата РЗМ до товарной продукции. Эти недостатки приводят к необходимости применения дополнительного оборудования - реакторов для растворения гидратов, фильтров для фильтрации большого количества полупродуктов, а также к дополнительному расходу достаточно дорогого реагента - щелочи при выщелачивании алюминия. Кроме того, степень извлечения РЗЭ данным способом достаточно низка - выход составляет 60%.

Для уменьшения влияния железа(III) и Al, на параметры сорбционного извлечения РЗЭ был использован способ [Смирнов Д.И., Молчанова Т.В., Водолазов Л.И., Пеганов В.А. Сорбционное извлечение редкоземельных элементов, иттрия и алюминия из красных шламов. // Цветные металлы, №8, 2002, с.64-69.]. В котором сорбцию РЗЭ вели из подкисленной до pH=1,7 сбросной пульпы, полученной после сорбционного выщелачивания скандия из красных шламов, на гелевом сульфокатионите КУ-2. Извлечение в черновой концентрат РЗЭ, иттрия и алюминия составило 48, 42 и 29% соответственно. После щелочного отделения алюминия был получен коллективный концентрат РЗЭ и иттрия с содержанием суммы оксидов РЗЭ 18÷25% и иттрия 9÷14%.

Тем не менее, в этом способе также не удалось эффективно извлечь РЗЭ вследствие конкурентной сорбции на сульфокатионите железа(III) и алюминия. Стадия доведения чернового концентрата до товарной продукции является трудоемким и энергоемким процессом, что делает экономически невыгодным извлечение РЗЭ из растворов и пульп этим способом.

Наиболее близким к заявленному является способ (прототип) [Мурсалимова М.Л., Строева Э.В. Определение равновесных параметров сорбции ионов иттрия и лантана из минерализованных растворов и железосодержащих пульп на карбоксильный катионит КБ-4 гелевого типа. // Вестник ОГУ, №5, 2006, с.86-90], в котором для повышения емкости сорбента по РЗЭ используется карбоксильный катионит гелевого типа КБ-4, а для повышения селективности процесса извлечения в присутствии железа(III) и Al кислый раствор, содержащий РЗЭ, нейтрализуется аммиаком до pH=6,2. Более высокая емкость карбоксильного катионита по сравнению с сульфокатионитом является следствием образования прочных комплексных соединений РЗЭ с карбоксильными группами катионита КБ-4 в отличие от чисто электростатического взаимодействия РЗЭ с сульфогруппами, в случае сульфокатионита. Отделение от основных примесей железа(Ш) и алюминия достигается при переводе их в гидроксидную форму при pH=6,2.

Недостатком этого способа является тот факт, что максимальная сорбируемость по РЗЭ на карбоксильном катионите наблюдается при pH=6,2. Это приводит к необходимости нейтрализовать кислый раствор до этого значения pH, что является следствием значительных потерь РЗЭ (до 25%) в результате соосаждения с гидроксидами железа(III) и алюминия.

Лучших результатов по сравнению с карбоксильными катионитами для извлечения РЗЭ из растворов с pH=2.5÷6.5 можно достичь, используя амфолиты с иминодиацетатными группами. Данный интервал pH определяется началом диссоциации функциональных групп амфолита и началом осаждения гидроксидов редкоземельных элементов. За счет комплексообразования при pH>2.5, вследствие диссоциации функциональных групп, данный класс амфолитов позволяет отделить РЗЭ от примесей щелочных, щелочноземельных металлов, алюминия и ряда других катионов, что решительно упрощает дальнейшую переработку элюатов. Более высокая емкость иминодиацетатных амфолитов по сравнению с карбоксильными катионитами, определяется образованием более прочных комплексных соединений РЗЭ с функциональными группами амфолитов.

Известно [В.Н.Рычков, Е.В.Кириллов, М.Л.Черный. Сорбционное выделение редкоземельных металлов из растворов сложного состава комплексообразующими ионитами // Материалы международной конференции "Благородные и редкие металлы" БРМ-2003, Украина, Донецк, 22-26 сентября 2003.], что иминодиацетатные амфолиты отличаются высоким сродством к переходным элементам (железо(III), медь, никель, кобальт, свинец). Для устранения влияния этих мешающих ионов на сорбцию РЗЭ из растворов (пульп) с pH>2.5 используют их осаждение щелочными или комплексообразующими агентами. Эта операция, при сорбции РЗЭ, из осветленного раствора, позволит получать более чистые элюаты, что скажется на уменьшении дальнейших затрат при производстве товарных концентратов.

Максимально полного отделения РЗЭ от ионов железа(III), как наиболее мешающей примеси, можно добиться путем введения в раствор восстановителя с целью восстановления ионов железа(III) до железа(II), т.к. известно, что амфолиты с иминодиацетатными функциональными группами проявляют незначительное сродство к ионам железа(II) [А.В.Гоголев, М.В.Никонов, И.Г.Тананаев, Б.Ф.Мясоедов Отделение трехвалентных актиноидов и редкоземельных элементов от примесей железа с применением некоторых комплексных соединений. // Радиохимия. №6, Т.47, 2005. с.534-535].

Разница в сорбируемости разных валентных состояний железа объясняется отличием их электронных конфигураций. Электронная структура железа(III) определяет комплексообразование с функциональными группами иминодиацетатного амфолита как за счет координации к кислороду гидроксильной группы амфолита, так и за счет координации к азоту иминной группы, являющемуся донором электронов.

Поглощение амфолитом ионов железа(II) начинает проявляться при pH>3, с началом диссоциации карбоксильных группировок. Сорбция в данном случае идет только за счет обмена ионов железа на ион водорода карбоксильной группировки, без образования комплексного соединения.

Депрессирующее влияние разновалентных ионов железа и алюминия на сорбцию РЗЭ из растворов иминодиацетатным амфолитом позволяет говорить о том, что для повышения степени извлечения РЗЭ необходимо стремиться уменьшать влияние фоновых примесей в растворе как за счет нейтрализации, так и за счет введения в систему восстановителя.

Задачей изобретения является создание более эффективного сорбционного способа извлечения РЗЭ из растворов, содержащих также железо(III) и Al.

Поставленная задача достигается согласно способу, который заключается в сорбционном извлечении редкоземельных элементов из растворов на амфолите, содержащем иминодиацетатные функциональные группы. Для этого раствор подвергается предварительной нейтрализации или подкислению до pH=4÷5 любым щелочным или кислым агентом, с дальнейшим введением амфолита в образовавшуюся пульпу, без отделения твердой части, при соотношении ионит: пульпа 1:50-1:150, времени контакта фаз 3-6 часов, в присутствии восстановителя.

Пример 1

В таблице 1 представлены результаты исследований по выбору оптимальных условий сорбционного извлечения РЗЭ (лантан) в зависимости от pH раствора.

Сорбцию проводили в статических условиях из кислых растворов HCl, H2SO4, HNO3 (pH=1; 2; 3; 4; 5; 6), содержащих 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. Навески амфолитов (0,5 г) контактировали при перемешивании с 50 см3 вышеуказанного раствора в течение 5 часов. Растворы после сорбции анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 1
Степень извлечения лантана, %
pH=1 pH=2 pH=3 pH=4 pH=5 pH=6
HCl H2SO4 HNO3 HCl H2SO4 HNO3 HCl H2SO4 HNO3 HCl H2SO4 HNO3 HCl H2SO4 HNO3 HCl H2SO4 HNO3
Амф олит 1,5 1,3 1,3 2 1,7 1,5 20 17 15 32 28,6 28 31 27,1 28 22 18 19

Из данных таблицы 1 видно, что с увеличением pH раствора сорбируемость РЗЭ (лантан) проходит через пик. Максимальная сорбируемость наблюдается при изменении pH от 4 до 5. Уменьшение сорбируемости при меньшем pH связано с протонированием карбоксильных групп амфолита. Увеличение pH раствора также приводит к уменьшению сорбируемости лантана, причиной чего является глубокий гидролиз ионов РЗЭ (лантан) и соосаждение с гидроксидами железа и алюминия. Полученные закономерности верны для всех исследуемых кислых сред.

Пример 2

В таблице 2 представлены результаты исследований по выбору оптимальных условий сорбционного извлечения РЗЭ (лантан) в зависимости от соотношения ионит: пульпа.

Сорбцию проводили в статических условиях из кислого раствора H2SO4, нейтрализованного до pH=4, содержащих 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. Навески амфолитов (0,5 г) контактировали при перемешивании с полученной после нейтрализации пульпой при соотношении ионит: пульпа 1:10, 1:30, 1:50, 1:80, 1:100, 1:150, 1:200, в течение 5 часов. Растворы после сорбции анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 2
емкость, мг/г
1:10 1:30 1:50 1:80 1:100 1:150 1:200
Амфолит 2 5 14 28 30 33 35

Из данных таблицы 2 видно, что с увеличением соотношения ионит: пульпа >1:50 сорбируемость РЗЭ (лантан) увеличивается.

Пример 3

В таблице 3 представлены результаты исследований по выбору оптимальных условий сорбционного извлечения РЗЭ (лантан) в зависимости от времени контакта фаз.

Сорбцию проводили в статических условиях из кислого раствора H2SO4, нейтрализованного до pH=4, при соотношении ионит: пульпа 1:100, содержащего 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. Навески амфолитов контактировали при перемешивании с пульпой, в течение 0.5, 1, 3, 5, 7, 9 часов. Растворы, после сорбции, анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 3
% емкость от максимальной
0,5 часа 1 час 3 часа 5 часов 7 часов 9 часов
Амфолит 20 40 85 95 96 99

Как видно из табл.3, наиболее полное извлечение РЗЭ (лантан) происходит за 3-6 часов.

Пример 4

В таблице 4 представлены результаты исследований по выбору оптимальных условий сорбционного извлечения РЗЭ (лантан) в зависимости от температуры проведения процесса.

Сорбцию проводили в статических условиях из кислого раствора H2SO4, нейтрализованного до pH=4, при соотношении ионит:пульпа 1:100, содержащего 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. Навески амфолитов контактировали при перемешивании с пульпой, при температуре 20; 40; 60; 80°C, в течение 5 часов. Растворы, после сорбции, анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 4
% емкость от максимальной
20°C 40°C 60°C 80°С
Амфолит 85 87 87 89

Из данных таблицы 4 следует, что температура проведения процесса сорбции лантана не оказывает заметного влияния на степень его извлечения из кислых растворов.

Пример 5

В таблице 5 представлены результаты исследований по влиянию добавок различных восстановителей на полноту и избирательность извлечения РЗЭ (лантан).

Сорбцию проводили в статических условиях из кислого раствора H2SO4, нейтрализованного до pH=2, 3, 4, 5, 6 при соотношении ионит: пульпа 1:100, содержащего 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. После доведения pH пульпы до необходимого значения, в пульпу вводили восстановитель (железная стружка, сульфит натрия, мочевина) с шестикратным избытком от стехиометрического содержания ионов железа(III). Далее навески амфолитов контактировали при перемешивании с пульпой в течение 5 часов. Растворы, после сорбции, анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 5
Восстановитель Степень извлечения, %
рН=2 pH=3 pH=4 pH=5 pH=6
La Fe(III) A1 La Fe(III) A1 La Fe(III) Al La Fe(III) Al La Fe(III) Al
Без восстановителя 1,7 2,5 1 17 20 5 28,6 10 10 27,1 7 3 18 2 0,5
Железная стружка 3 0,07 1,3 24 0,07 6 50 0,1 8 49 0,01 4 27 0,05 0,4
Сульфит натрия 3,3 0,055 1,5 24,5 0,075 5 47,6 0,2 8 49,1 0,09 2 25 0,06 0,4
Мочевина 3,1 0,05 1,4 23 0,06 5 50 0,15 7 51 0,07 2 28 0,04 0,3

Из данных таблицы 5 следует, что введение в кислый раствор восстановителя приводит к резкому увеличению емкости иминодиацетатного амфлита по РЗЭ (лантан) и уменьшению емкости по железу(III).

Таким образом, технический результат, предложенного способа извлечения РЗЭ из растворов определяется высокой эффективностью этого способа за счет большей сорбционной емкости и избирательности иминодиацетатного амфолита по РЗЭ в присутствии железа(III) и Al, при нейтрализации или подкислении раствора до pH=4-5 и проведении процесса сорбции в присутствии восстановителя.

Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включающий сорбцию редкоземельных элементов на сорбенте, отличающийся тем, что в качестве сорбента используют амфолит с иминодиацетатными функциональными группами и сорбцию проводят после предварительной нейтрализации или подкисления раствора до pH=4÷5 любым щелочным или кислым агентом с дальнейшим введением амфолита в полученную пульпу без отделения твердой части, при соотношении амфолит:пульпа 1:50÷1:150, времени контакта фаз 3÷6 ч, в присутствии восстановителя.
Источник поступления информации: Роспатент

Showing 91-100 of 119 items.
20.05.2016
№216.015.4194

Конструкция фотоэлектрического модуля космического базирования

Изобретение относится к области гелиоэнергетики и касается конструкции фотоэлектрического модуля космического базирования. Фотоэлектрический модуль включает в себя нижнее защитное покрытие, на котором с помощью полимерной пленки закреплены кремниевые солнечные элементы с антиотражающим...
Тип: Изобретение
Номер охранного документа: 0002584184
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.42d0

Имплантированное ионами цинка кварцевое стекло

Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем....
Тип: Изобретение
Номер охранного документа: 0002585009
Дата охранного документа: 27.05.2016
20.08.2016
№216.015.4bab

Детектор заряженных частиц с тонким сцинтиллятором

Изобретение относится к области детекторов заряженных частиц на основе твердотельных органических сцинтилляторов. Детектор заряженных частиц с тонким сцинтиллятором в виде пластины содержит полупроводниковый фотосенсор в качестве преобразователя инициированных заряженными частицами световых...
Тип: Изобретение
Номер охранного документа: 0002594991
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.73d2

Способ подавления лавинного шума в спектрометрах с медленными сцинтилляторами и кремниевыми фотоумножителями

Изобретение относится к сцинтилляционным спектрометрам ионизирующих излучений. Сущность изобретения заключается в том, что сцинтилляционные сигналы и лавинные шумовые импульсы с выхода кремниевого фотоумножителя, прежде чем они попадут на интегратор сцинтилляционных импульсов, разветвляют в...
Тип: Изобретение
Номер охранного документа: 0002597668
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8752

Способ извлечения скандия и редкоземельных элементов из красных шламов

Изобретение относится к извлечению скандия и редкоземельных элементов (РЗЭ) из красных шламов. Распульповку красного шлама проводят при рН=0,5-1. Пульпу подвергают механоактивации, сорбционное выщелачивание скандия ведут с органическим сорбентом, в поры которого импрегнирован эфир фосфорной...
Тип: Изобретение
Номер охранного документа: 0002603418
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8b81

Способ получения урановых концентратов из кислых растворов

Изобретение относится к области гидрометаллургии и может быть использовано для производства урановых концентратов в технологии природного урана и оборотного ядерного топлива. Способ получения урановых концентратов из кислых растворов после десорбции урана с анионита заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002604154
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.ab6e

Способ извлечения скандия из скандийсодержащего продуктивного раствора

Изобретение относится к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана при его добыче методом подземного выщелачивания. Способ включает сорбцию скандия из скандийсодержащего раствора на твердом экстрагенте с...
Тип: Изобретение
Номер охранного документа: 0002612107
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.be4b

Установка для получения урановых концентратов из кислых растворов

Изобретение относится к гидрометаллургии. Установка содержит сборник уранового регенерата, каскад реакторов осаждения уранового концентрата для получения осадка уранового концентрата, коллектор с трубопроводами раздачи нейтрализующего реагента в реакторы осаждения уранового концентрата,...
Тип: Изобретение
Номер охранного документа: 0002616744
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c347

Способ получения оксида скандия из концентрата скандия

Изобретение относится к металлургии цветных металлов, а именно к технологии получения оксида скандия из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов. Способ получения оксида скандия включает растворение...
Тип: Изобретение
Номер охранного документа: 0002618012
Дата охранного документа: 02.05.2017
Showing 91-100 of 192 items.
10.12.2014
№216.013.0e08

Способ совместного определения ионов cu(ii), pb(ii), fe(iii) и bi(iii) методом капиллярного зонного электрофореза

Изобретение относится к области аналитической химии и может быть использовано для одновременного определения содержания ионов Cu(II), Pb(II), Fe(III) и Bi(III) в различных матрицах. Техническим результатом изобретения является расширение перечня определяемых компонентов, разработка простого,...
Тип: Изобретение
Номер охранного документа: 0002535009
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0ef3

Имплантированная ионами олова пленка оксида кремния на кремниевой подложке

Изобретение относится к материаловедению. Пленка оксида кремния на кремниевой подложке, имплантированная ионами олова, включает нанокластеры альфа-олова. Толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры...
Тип: Изобретение
Номер охранного документа: 0002535244
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100c

Способ определения удельного электросопротивления расплавов и устройство для его осуществления

Группа изобретений относится к технической физике, а именно - к анализу материалов путем бесконтактного определения методом вращающегося магнитного поля электросопротивления образца в зависимости от температуры, в частности - к определению относительной электропроводности металлов и сплавов в...
Тип: Изобретение
Номер охранного документа: 0002535525
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.177b

Устройство для монтажа плит и балок

Изобретение относится к области строительства, а именно к монтажу плит перекрытия (покрытия) и балок зданий вне зоны действия монтажного крана. Задача изобретения - обеспечение возможности монтажа плит и балок в зданиях различного назначения вне зоны действия монтажного крана, без использования...
Тип: Изобретение
Номер охранного документа: 0002537439
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1840

Устройство для получения гофрированных труб

Изобретение относится к области обработки металлов давлением, конкретно к трубопрофильному производству. Формующий узел содержит профилирующий элемент в виде мембраны и связанных с ней одного или нескольких профилирующих кольцевых выступов, причем мембрана установлена с возможностью изгибания...
Тип: Изобретение
Номер охранного документа: 0002537636
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1859

Аккумулятор тепловой энергии периодического действия

Изобретение относится к энергетике и может быть использовано в аккумуляторах тепловой энергии, произведенной за счет использования электрической энергии в периоды ее наименьшей стоимости по ночным тарифам. Сущность изобретения: аккумулятор тепловой энергии периодического действия, содержащий в...
Тип: Изобретение
Номер охранного документа: 0002537661
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1990

Способ передачи данных в полосе частот аналогового тв

Изобретение относится к технике связи и может использоваться для передачи данных в полосе частот аналогового ТВ. Технический результат состоит в обеспечении магнитной совместимости телевизионных операторов в одной полосе частот. Для этого способ основан на выборе в полосе ТВ частотных окон,...
Тип: Изобретение
Номер охранного документа: 0002537972
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a45

Электрохимический способ иммуноанализа для определения микроорганизмов

Изобретение относится к биотехнологии, в частности к определению содержания микроорганизмов в различных объектах и средах. Способ предусматривает конъюгацию бактерий с электрохимической меткой, в качестве которой используют Fe, MgFeO или FeO, осуществляемую в водной среде при заданных...
Тип: Изобретение
Номер охранного документа: 0002538153
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1df8

Биогазовая установка

Изобретение относится к области переработки и утилизации органических отходов путем сбраживания биомассы для получения биогаза и удобрения, в том числе в зонах с холодным климатом. Биогазовая установка содержит теплоизолированный метантенк, состоящий из экструдера-смесителя, электрических...
Тип: Изобретение
Номер охранного документа: 0002539100
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfc

Способ изготовления безгистерезисного актюатора с линейной пьезоэлектрической характеристикой

Изобретение относится к области изготовления устройств точного позиционирования на основе пьезоэлектрических актюаторов, характеризующихся широким интервалом рабочих температур, в частности для изготовления прецизионных безгистерезисных сканеров сканирующих зондовых микроскопов и устройств...
Тип: Изобретение
Номер охранного документа: 0002539104
Дата охранного документа: 10.01.2015
+ добавить свой РИД