×
27.05.2013
216.012.4574

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ КВАНТОВОЙ ИНФОРМАЦИИ

Вид РИД

Изобретение

Аннотация: Заявлен способ обработки квантовой информации. В способе выбирают параметры рабочей среды и вид допирующего редкоземельного элемента. Фотоны в среде приобретают относительный нелинейный сдвиг фазы. Величиной сдвига управляют изменением настроек двух дополнительных полей оптической накачки. За счет нелинейного набега фаз импульсов в данной среде происходит реализация заданных квантовых логических операций. Техническим результатом является получение эффективного способа обработки информации оптическим методом. 2 ил., 1 табл.
Основные результаты: Способ обработки квантовой информации, включающий взаимодействие атомной среды с оптическими однофотонными пробными импульсами света, которые получают относительный нелинейный сдвиг фазы ϕ, отличающийся тем, что его величиной управляют путем изменения настроек двух дополнительных полей оптической накачки при использовании М-схемы атомно-оптического взаимодействия в допированной атомами редкоземельных элементов оптической среде и определяют по формуле: ,где i соответствует различным комбинациям правой |σ> и левой |σ> циркулярных поляризаций пробных фотонов а и b на входе среды и принимает значения i=1 для , i=2 для , i=3 для i=4 для показатели преломления среды имеют вид , , , , , , ; L - длина среды, n=1,45 - коэффициент преломления оптического кристалла, - эффективная добавка к показателю преломления кристалла за счет наличия резонансных атомов, - то же самое, но в случае, когда поляризация одного из пробных импульсов не соответствует правилу отбора на соответствующем атомном переходе и М-схема редуцирует к Λ-схеме, χ - восприимчивости ансамбля допированных атомов.

Изобретение относится к области оптических квантовых вычислений, а именно к способам обработки квантовой информации, и может быть использовано для обработки квантовой информации.

Известен способ реализации квантовых логических операций с использованием поляризационных состояний одиночных фотонов [заявка 2005128554/09, 17.02.2004 на выдачу патента на изобретение «Способ и программируемое устройство для квантовых вычислений», http://wwwl.fips.ru/fips_servl/fips_servlet]. Способ основан на использовании двух поляризационных светоделителей, на первом из которых происходит смешивание первого однофотонного импульса с холостой модой с последующей подачей одной из полученных поляризационных мод на второй светоделитель. Такая логическая операция может быть использована для осуществления квантовых вычислений. Известен также способ квантовых вычислений [«Techniques for performing logic operations using quantum states of single photons», патент США 6741374, The Johns Hopkins University http://www.freepatentsonline.com/6741374.html], при котором имеется программа для нахождения функций, описывающих процедуры вычисления значения. Выполняют континуализацию закодированной программы и выражают ее в виде дифференциального оператора. Далее реализуют дифференциальный оператор в физической среде и из нее извлекают решение для континуализированной закодированной программы.

Недостатки данных способов состоят в том, что они относятся, в основном, к проектированию отдельных логических элементов и не объединяют отдельные блоки обработки квантовой информации для реализации распределенной обработки информации и создания квантового процессора.

Наиболее близким к предлагаемому способу является способ квантовых вычислений с использованием нелинейных эффектов. Взаимодействие пары фотонов с многочисленными парами атомов среды дает сильный нелинейный сдвиг фазы [«Optical method for quantum computing», патент США 6678450, The Johns Hopkins University, http:/www.freepatentsonline.com/6678450.html]. Этим сдвигом можно управлять, изменяя параметры взаимодействия, используя многочисленные лазерные импульсы и буферный газ. При определенном фазовом сдвиге осуществляются условия, при которых происходит изменение поляризации фотонов, соответствующее квантовой операции XOR.

Недостаток данного способа заключается в использовании газовых сред для достижения фазовых сдвигов, что не позволяет использовать указанные среды для серийного производства.

Задача, решаемая изобретением - обеспечение возможности эффективной обработки квантовой информации за счет применения оптических материалов, допированных атомами редкоземельных элементов, которые эффективно могут быть использованы при серийном производстве элементной базы квантовых вычислений.

Предлагаемая задача решается тем, что в способе обработки квантовой информации, включающем взаимодействие атомной среды с оптическими однофотонными пробными импульсами света, которые получают относительный нелинейный сдвиг фазы ϕi, величиной сдвига управляют путем изменения настроек двух дополнительных полей оптической накачки при использовании М-схемы атомно-оптического взаимодействия в допированной атомами редкоземельных элементов оптической среде и определяют по формуле

где i соответствует различным комбинациям правой и левой циркулярных поляризаций пробных фотонов а и b на входе среды и принимает значения i=1 для , i=2 для , i=3 для , i=4 для ; показатели преломления среды имеют вид , , , , , , ; L - длина среды, n0=1.45 - коэффициент преломления оптического кристалла, по которому распространяются фотоны,

- эффективная добавка к показателю преломления среды за счет наличия резонансных атомов, - то же самое, но в случае, когда поляризация одного из пробных импульсов не соответствует правилу отбора на соответствующем атомном переходе и М-схема редуцирует к Λ-схеме, χp1(p2) - восприимчивости ансамбля допированных атомов, gp1(p2) - частоты Раби пробных импульсов, N - концентрация атомов.

Технически задача реализуется тем, что в оптическую рабочую среду, допированную атомами редкоземельных элементов, подаются два однофотонных пробных импульса света с произвольными циркулярными поляризациями . В допированной среде реализуется М-схема атомно-оптического взаимодействия (см. Фиг.1) с участием двух дополнительных полей оптической накачки определенных поляризаций и и с малыми частотами отстройки δ1(2). При прохождении сквозь дотированную среду пробных фотонов, ими приобретается различный относительный набег фазы ϕi, определяемый комбинацией поляризаций пробных фотонов на входе - в формуле (1). В качестве рабочего используется перепутанное состояние пробных фотонов а и b на входе среды в форме:

где - комплексные амплитуды, определяющие вероятности соответствующих базисных состояний, , - начальные фазы.

Измерения разности фаз пробных фотонов осуществляются с помощью поляризационных фотодетекторов. При выборе параметров системы, изменения частотных отстроек δ1(2) позволяют менять фазовые набеги ϕi для возможности реализации различных квантовых логических операций, выполняемых над состоянием (2).

Пример реализации способа

В качестве рабочей среды использовали кристалл, допированный атомами 59Pr, схема рабочих уровней которого представлена на Фиг.1, и со следующими параметрами взаимодействия: длина среды L=1 мм; параметры допированных атомов: γopt=43.5кГц, γmag=4 кГц, γs - 0.25 кГц. Длительности пробных импульсов выбраны равными τp1,p2=258 пс, длительности импульсов накачек τс1,с2=939.1 пс, интенсивности пробных импульсов Ip1,р2=44.84 кВт/м2.

Например, была реализована логическая команда XOR в два этапа. На начальном этапе осуществлено фазовое кодирование перепутанного состояния для достижения необходимых параметров при выборе начальной фазы перепутанного состояния , равной нулю - Фиг.2, и осуществлении фазового сдвига . На втором этапе, при изменении частот отстроек полей накачки δ1(2) и достижении фазовых набегов , реализована квантовая логическая операция XOR в соответствии с таблицей истинности.

Эффект: по сравнению с прототипами, реализация данного способа обработки информации происходит не в газовой, а в твердой среде, что предпочтительно для серийного производства и долгосрочного использования образцов. Возможность внешнего оптического управления позволяет реализовать сразу несколько квантовых логических операций в одной допированной среде.

Таблица истинности для преобразования XOR
Состояние
0 0
π/2 π/2
π 3π/2
3π/2 π

Способ обработки квантовой информации, включающий взаимодействие атомной среды с оптическими однофотонными пробными импульсами света, которые получают относительный нелинейный сдвиг фазы ϕ, отличающийся тем, что его величиной управляют путем изменения настроек двух дополнительных полей оптической накачки при использовании М-схемы атомно-оптического взаимодействия в допированной атомами редкоземельных элементов оптической среде и определяют по формуле: ,где i соответствует различным комбинациям правой |σ> и левой |σ> циркулярных поляризаций пробных фотонов а и b на входе среды и принимает значения i=1 для , i=2 для , i=3 для i=4 для показатели преломления среды имеют вид , , , , , , ; L - длина среды, n=1,45 - коэффициент преломления оптического кристалла, - эффективная добавка к показателю преломления кристалла за счет наличия резонансных атомов, - то же самое, но в случае, когда поляризация одного из пробных импульсов не соответствует правилу отбора на соответствующем атомном переходе и М-схема редуцирует к Λ-схеме, χ - восприимчивости ансамбля допированных атомов.
СПОСОБ ОБРАБОТКИ КВАНТОВОЙ ИНФОРМАЦИИ
СПОСОБ ОБРАБОТКИ КВАНТОВОЙ ИНФОРМАЦИИ
СПОСОБ ОБРАБОТКИ КВАНТОВОЙ ИНФОРМАЦИИ
СПОСОБ ОБРАБОТКИ КВАНТОВОЙ ИНФОРМАЦИИ
СПОСОБ ОБРАБОТКИ КВАНТОВОЙ ИНФОРМАЦИИ
СПОСОБ ОБРАБОТКИ КВАНТОВОЙ ИНФОРМАЦИИ
СПОСОБ ОБРАБОТКИ КВАНТОВОЙ ИНФОРМАЦИИ
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
10.04.2013
№216.012.32db

Способ получения волокон в электрическом однородном поле

Изобретение относится к области нанотехнологии, в частности, может быть использовано в химической промышленности, электронике, медицине, машиностроении для изготовления пластмасс, компонентов топливных ячеек, аккумуляторов, суперконденсаторов, дисплеев, источников электронов, материалов для...
Тип: Изобретение
Номер охранного документа: 0002478562
Дата охранного документа: 10.04.2013
27.12.2013
№216.012.91ef

Способ генерации перепутанных поляритонов

Способ относится к генерации перепутанных поляритонов. Способ генерации перепутанных поляритонов заключается в том, что выбираются параметры схемы атомно-оптического взаимодействия в допированной среде и за счет внешнего оптического управления происходит генерации перепутанных поляритонов....
Тип: Изобретение
Номер охранного документа: 0002503052
Дата охранного документа: 27.12.2013
10.01.2016
№216.013.9ef0

Способ получения графена

Изобретение может быть использовано для получения материалов и элементов наноэлектроники, нанофотоники, газовых сенсоров и лазерных систем с ультракороткими импульсами излучения. Графен получают путем расслоения графита в жидком азоте. Поверхность графитовой мишени обрабатывают пучком...
Тип: Изобретение
Номер охранного документа: 0002572325
Дата охранного документа: 10.01.2016
13.01.2017
№217.015.860c

Способ получения покрытия из микроструктурированного карбида титана на поверхности изделия из титана или титанового сплава с использованием лазерного излучения

Изобретение относится к формированию износостойких покрытий из карбида титана на поверхности изделий из титана или его сплавов и может быть использовано для формирования покрытий на деталях и инструментах, работающих в условиях интенсивного износа, агрессивных сред и высоких температур. Способ...
Тип: Изобретение
Номер охранного документа: 0002603751
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.c5d4

Способ формирования металлуглеродных комплексов на основе наночастиц шунгита, золота и серебра

Использование: для получения наноструктурированных металлуглеродных соединений. Сущность изобретения заключается в том, что коллоидный раствор золота, серебра смешивают с коллоидным раствором углерода (шунгита) в концентрации от 10 (углерод) : 1 (золото) : 1 (серебро) до 5 (углерод) : 3...
Тип: Изобретение
Номер охранного документа: 0002618484
Дата охранного документа: 03.05.2017
26.08.2017
№217.015.d9b1

Способ подавления спонтанной эмиссии квантовых излучателей в среде с диссипацией

Способ подавления спонтанной эмиссии квантовых излучателей в среде с диссипацией заключается в размещении излучателя в однородную диэлектрическую матрицу-носитель с комплексным показателем преломления. При этом подбирают параметры действительной и мнимой части показателя преломления...
Тип: Изобретение
Номер охранного документа: 0002623695
Дата охранного документа: 28.06.2017
Showing 1-1 of 1 item.
10.06.2013
№216.012.48b0

Способ получения микро- и наноструктурированных массивов кристаллов оксида цинка

Изобретение относится к области полупроводникового материаловедения и может быть использовано для получения отдельных кристаллов и массивов оксида цинка для применения в качестве активных элементов, материала для фотокаталитической очистки сред, пьезоэлектрических датчиков, а также для...
Тип: Изобретение
Номер охранного документа: 0002484188
Дата охранного документа: 10.06.2013
+ добавить свой РИД