×
20.05.2013
216.012.406b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии. Широкопористый оксид алюминия в гамма-форме получают осаждением гидроксида алюминия из раствора азотнокислого алюминия водным раствором аммиака при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч. Пасту с влажностью 58÷66% формуют. Пасту получают смешением (66÷70)% влажного осадка гидроксида алюминия и порошка, высушенного на распылительной сушилке (30÷34)% влажного осадка гидроксида алюминия, приготовленного в виде суспензии. После формовки проводят сушку и прокаливание. Изобретение позволяет получить широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной (340÷370) м/г, объемом пор - (0,82÷1,09) см/г и средним диаметром пор - 9,2÷11 нм. 8 ил., 8 пр., 1 табл.
Основные результаты: Способ получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, отличающийся тем, что осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58÷66%, полученной смешением 66÷70% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке 30÷34% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной 340÷370 м/г, объемом пор - 0,82÷1,09 см/г и средним диаметром пор - 9,2÷11 нм.

Изобретение относится к способу получения широкопористого оксида алюминия в γ-форме, широко используемого в химической и нефтехимической промышленности [Иванова А.С. Оксид алюминия: применение, способы получения, структура и кислотно-основные свойства. // Промышленный катализ в лекциях, 2009, №8, с.7-61] в качестве катализатора и компонента сложных катализаторов, носителя при синтезе как металлических, так и оксидных катализаторов, а также в качестве адсорбента (для обезвоживания газов и жидкостей).

Выпускаемые отечественными производителями оксиды алюминия по "алюминатной" или "сульфатной" технологии содержат значительные количества примесей, главным образом натрия и сульфат-ионов, наличие которых существенным образом снижает активность большинства катализаторов, полученных на его основе. Кроме того, отечественные образцы оксида алюминия имеют преимущественно бимодальное или полидисперсное распределение пор по размерам, тогда как для интенсификации процессов нефтепереработки, нефтехимии, а также для получения продукции специального назначения, необходима новая модификация оксидного материала - высокочистый широкопористый оксид алюминия с мономодальным распределением пор по размерам, производство которого в России отсутствует.

Активный оксид алюминия в виде γ-формы получают, как правило, термическим разложением гидроксида алюминия псевдобемитной структуры (AlOOH х n Н2О) при температуре 500-600°С, характеризующегося высокой величиной удельной поверхности (300-500) м2/г, относительно большим объемом пор (0,8-1,2) см3/г и высокой термической стабильностью.

Известно [SU 852798, C01F 7/34, 1981; CN 101332997(A), C01B 3/08, 2008], что высокочистый оксид алюминия получают по золь-гель-методу с использованием в качестве исходных предшественников алкоголятов алюминия; синтез гидроксида алюминия включает следующие стадии: гидролиза алкоголята алюминия, конденсации и образования мономеров, димеров и олигомеров. Свойства осадка можно регулировать соотношением воды и алкоксида [Gonzalez R.D., Lopez Т., Gomez R. Sol-Gel preparation of supported metal catalysts. // Catalysis Today, 1997. V.35, №3, P.293; CN 1419961 (A), B01J 19/30 2003; CN 1807246(A), B01J 21/04, 2006], изменяя величину удельной поверхности от 250 до 500 м2/г при одновременном уменьшении диаметра пор от 15 до 9 нм, формируя мономодальное распределение пор по размерам. К недостаткам метода, основанного на гидролизе алкоксидов, следует отнести специфичность исходного сырья, необходимость предотвращения контакта с окружающей средой и строго соблюдать соотношение вода/алкоксид и использовать специальное оборудование; кроме того, получаемый гидроксид и оксид алюминия имеет большую себестоимость по сравнению с методом осаждения растворов солей алюминия {Al(NO3)3, AlCl3, Al2(SO4)3, NaAlO2} водным раствором осадителя {NH4OH, NaOH, KOH, HNO3}. Показано [Дзисько В.А., Иванова А.С.Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, Сер.хим. наук. 1985. №15, вып.5, с.110], что путем изменения рН, температуры осаждения и продолжительности «старения» (выдерживания суспензии при заданных условиях) можно варьировать фазовый состав и текстурные характеристики получаемого гидроксида и оксида алюминия.

В зависимости от рН среды ионизация Al-содержащих молекул происходит следующим образом [Иванова А.С., Пугач М.М., Мороз Э.М. и др. Влияние условий получения на физико-химические свойства гидроксидов алюминия и магния. // Изв. АН СССР, Сер.хим., 1989. №10, С.2169-2176]:

,

,

,

.

Химическая чистота получаемого гидроксида и оксида алюминия зависит от природы исходных предшественников и наиболее подходящими являются азотнокислый алюминий и водный раствор аммиака, а именно: Al(NO3)3+3NH4OH→AlOOH↓ (Al(ОН)3↓)+3NH4NO3. В зависимости от условий осаждения получаемый осадок может представлять собой либо псевдобемит - AlOOH, либо байерит - Al(ОН)3. Известен способ получения гидроксида алюминия байеритной структуры [Пат. 236438, (РФ). Способ получения байеритного гидроксида алюминия. // В.А.Дзисько, Т.С.Винникова, Ю.О.Булгакова].

Наиболее близким к заявляемому по технической сущности является способ получения гидроксида алюминия псевдобемитной структуры, описанный в [Дзисько В.А., Иванова А.С.Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, Сер.хим. наук. 1985. №15, вып.5, с.110-119]. Гидроксид алюминия псевдобемитной структуры получают либо:

1) по «двухстадийному» способу, согласно которому часть гидроксида алюминия осаждают при комнатной температуре («холодное» осаждение - ХО), а другую часть - осаждением при 100°С («горячее» осаждение - ГО), затем обе части ХО и ГО смешивают, выдерживают в течение определенного времени, затем фильтруют, промывают; формование гранул гидроксида алюминия проводят в присутствии кислоты при определенном кислотном модуле; полученные ганулы сушат и прокаливают при требуемой температуре. Основной недостаток получаемого гидроксида и оксида алюминия состоит в том, что при смешении осадков ХО и ГО грубодисперсные агрегаты ГО образуют каркас, в макропорах которого размещается высокодисперсная фаза ХО, в результате формируется бимодальное распределение пор по размерам;

2) осаждением раствора азотнокислой соли алюминия водным раствором аммиака при постоянных значениях рН и температуры, значения которых определяют в большей степени свойства получаемого гидроксида алюминия, а следовательно, и оксида алюминия. Оксид алюминия, полученный из гидроксида, осажденного при комнатной температуре и невысоких рН, обладает мономодальным распределением пор по размерам с преобладающим диаметром пор, равным 8,0 нм; а полученный из гидроксида, осажденного при 100°С, бимодальным распределением пор по размерам.

Изобретение решает задачу получения широкопористого оксида алюминия в γ-форме с мономодальным распределением пор по размерам, средний диаметр которых составляет 9,0-11,0 нм.

Задача решается способом получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, при этом осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58-66%, полученной смешением (66-70)% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке (30-34)% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый оксид алюминия, характеризующегося мономодальным распределением пор по размерам, с величиной удельной поверхности, равной (340÷370) м2/г, объемом пор - (0,82÷1,09) см3/г и средним диаметром пор - 9,2÷11 нм.

Отличительные признаки предлагаемого способа получения гамма-оксида алюминия:

1. Способ получения, включающий осаждение раствора азотнокислого алюминия водным раствором аммиака при рН 7±0,1 и температуре (70±2)°С с последующим «старением» при указанных условиях в течение 3-5 ч.

2. Способ получения, включающий стадию формования гранул гидроксида алюминия путем смешения одной части высушенного на распылительной сушилке осадка с двумя частями влажного осадка гидроксида при влажности формуемой пасты 58-66% с последующими стадиями сушки и термической обработки. Получаемый оксид алюминия представляет собой γ-Al2O3, характеризующегося мономодальным распределением пор по размерам, величиной удельной поверхности, равной 340-370 м2/г, объемом пор - 0,82-1,09 см3/г, средний диаметр которых составляет 9,2-11 нм.

Основные характеристики получаемого гамма-оксида алюминия определяют:

- фазовый состав на дифрактометре HZG-4C (Германия) в монохроматическом излучении CuKα (λ=1,5418 Å) в интервале углов от 10 до 75° (по 2θ) с шагом сканирования τ=0,05 градуса 2θ и временем накопления 5 с в каждой точке. Фазовый анализ проводят по программе PCW.2.4 путем сопоставления экспериментальных дифрактограмм и теоретически рассчитанных на основе известных структур, взятых из базы структурных данных ICDS с учетом профиля дифракционных линий;

- текстурные характеристики (величину Sуд, объем пор - Vп, средний диаметр пор - dпop и распределение пор по размерам) методом низкотемпературной (-196°С) адсорбции азота на установке ASAP-2400 Micromeritics; предварительно образцы тренируют в вакууме при 150°С.

Получение гамма-оксида алюминия включает осаждение раствора азотнокислого алюминия водным раствором аммиака при постоянном рН, равным 7±0,1, температуре (70±2)°С с последующим «старением» при указанных условиях в течение 3-5 ч, после чего осадок отфильтровывают, промывают дистиллированной водой. Одну часть влажного осадка разбавляют дистиллированной водой для приготовления суспензии с концентрацией (120±5)г Al2O3/л, которую подают на распылительной сушилку, получают порошок с размерами частиц, не превышающих 15-20 мкм, который смешивают с двумя другими частями влажного осадка с образованием пасты с влажностью 58÷66%, которую формуют в виде гранул с последующей их сушкой на воздухе, затем в сушильном шкафу при 110°С в течение 12-14 ч, после чего прокаливают в токе осушенного воздуха при 550-600°С в течение 4-х ч.

Сущность предлагаемого изобретения иллюстрируется следующими примерами, показывающими изменение фазового состава и текстурных характеристик получаемого оксида алюминия в зависимости от условий осаждения и формования.

Основные характеристики гамма-оксида алюминия приведены в таблице и на Фиг.1-8.

Пример 1.

В реактор, помещенный в термостат, заливают 500 мл дистиллированной воды, устанавливают рН-метр и включают обогрев реактора и мешалку; при достижении температуры 70°С в реактор дозируют раствор азотнокислого алюминия, содержащего 100 г Al2O3, со скоростью 25 мл/мин, одновременно добавляя 900 мл водного раствора NH4OH для поддержания рН осаждения, равным 7,0±0,1. Полученную суспензию выдерживают при указанных условиях в течение 3 ч, после чего фильтруют и промывают дистиллированной водой. Одну третью часть отмытого влажного осадка разбавляют дистиллированной водой до концентрации (120±5)г Al2O3/л и полученную суспензию подают на распылительную сушилку для получения порошка с размером частиц не более 15-20 мкм. Высушенный порошок гидроксида алюминия смешивают с остальными 2/3 частями влажного осадка с образованием пасты с влажностью 62,3%, которую формуют в виде гранул, сушат на воздухе, затем в сушильном шкафу при 110°С в течение 12-14 ч, после чего прокаливают при 550°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.1.

Пример 2.

Аналогичен примеру 1. Отличие состоит в том, что влажность формуемой пасты составляет 60,3%; гранулы прокаливают при 600°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.4.

Пример 3.

Аналогичен примеру 1. Отличие состоит в том, что полученную суспензию выдерживают при указанных условиях в течение 4 ч. Влажность формуемой пасты составляет 59,9%; гранулы прокаливают при 600°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.2.

Пример 4.

Аналогичен примеру 1. Отличие состоит в том, что полученную суспензию выдерживают при указанных условиях в течение 5 ч. Влажность формуемой пасты составляет 65,7%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.3.

Пример 5.

Аналогичен примеру 4. Отличие состоит в том, что влажность осадка, используемого при смешении с высушенным порошком гидроксида алюминия, составляет 63,0%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.5.

Пример 6.

Аналогичен примеру 4. Отличие состоит в том, что влажность осадка, используемого при смешении с высушенным порошком гидроксида алюминия, составляет 58,1%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.6.

Пример 7.

Аналогичен примеру 1. Отличие состоит в том, что осаждение гидроксида проводят при рН 7,0±0,1 и температуре 90°С. Влажность формуемой пасты составляет 59,7%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.7.

Пример 8.

Аналогичен примеру 1. Отличие состоит в том, что осаждение гидроксида проводят при рН 9,0 и температуре 70°С. Влажность формуемой пасты составляет 61,5%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.8.

Показатели γ-оксида алюминия по всем примерам приведены в таблице и на Фиг.1-8.

Таблица
Основные показатели гамма-оксида алюминия
№№ при мера Условия получения рН-Т-τ (ч) Влажность формуемой пасты, % Tпрок, °C Фазовый состав Текстурные характеристики
S,м2 Vп,см3 dпор, нм Распределение пор по размерам
1 7-70-3 62,3 550 γ-Al2O3 340 0,87 10,1 Мономодальное
2 7-70-3 60,3 600 γ-Al2O3 345 1,09 11,0 Мономодальное
3 7-70-4 59,9 600 γ-Al2O3 355 0,94 10,6 Мономодальное
4 7-70-5 65,7 550 γ-Al2O3 370 1,01 11,0 Мономодальное
5 7-70-5 63,0 550 γ-Al2O3 350 0,84 9,5 Мономодальное
6 7-70-5 58,1 550 γ-Al2O3 355 0,82 9,2 Мономодальное
7 7-90-5 59,7 550 γ-Al2O3 298 0,45 6,1 Мономодальное
8 9-70-5 61,5 550 γ-Al2O3 270 0,44 6,5 Мономодальное

Распределение пор по размерам по всем примерам приведены на Фиг.1-8.

Фиг.1. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-3, при влажности формуемой пасты - 62,3%, прокаленного при 550°С.

Фиг.2. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-3, при влажности формуемой пасты - 60,3%, прокаленного при 600°С.

Фиг.3. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-4, при влажности формуемой пасты - 59,9%, прокаленного при 600°С.

Фиг.4. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 65,7%, прокаленного при 550°С.

Фиг.5. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 63,0%, прокаленного при 550°С.

Фиг.6. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 58,1%, прокаленного при 550°С.

Фиг.7. Распределение пор по размерам для γ-Al2O3, полученного при 7-90-5, при влажности формуемой пасты - 59,7%, прокаленного при 550°С.

Фиг.8. Распределение пор по размерам для γ-Al2O3, полученного при 9-70-5, при влажности формуемой пасты - 61,5%, прокаленного при 550°С.

Как видно из приведенных примеров, таблицы и Фиг., предлагаемый нитратно-аммиачный способ осаждения при рН 7, температуре 70°С и времени выдержки суспензии при указанных условиях в течение 3-5 ч с последующим формованием гранул при влажности формуемой пасты 58÷66% позволяет решать задачу получения широкопористого оксида алюминия в γ-форме с величиной удельной поверхности, равной (340-370) м2/г, объемом пор - (0,82-1,09) см3/г и средним диаметром пор - 9,2-11 нм, при этом распределение по размерам является мономодальным.

Повышение температуры осаждения до 90°С или повышение рН осаждения до 9 при одном и том же времени выдержки суспензии (τ=5 ч) приводит к значительному снижению величины удельной поверхности, объема пор и среднего диаметра пор при сохранении мономодального распределения пор по размерам.

Способ получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, отличающийся тем, что осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58÷66%, полученной смешением 66÷70% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке 30÷34% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной 340÷370 м/г, объемом пор - 0,82÷1,09 см/г и средним диаметром пор - 9,2÷11 нм.
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Showing 351-360 of 366 items.
21.03.2020
№220.018.0e10

Композитный демпфирующий элемент и способ его изготовления

Изобретение относится к защитным демпфирующим конструкциям из полимерных композитных материалов и способам их изготовления и может быть использовано в транспортных средствах, в индивидуальных средствах защиты, в различных взрывозащитных устройствах, в емкостях для транспортирования особо...
Тип: Изобретение
Номер охранного документа: 0002717270
Дата охранного документа: 19.03.2020
02.04.2020
№220.018.1301

Устройство вибродемпфирования виброизолированного от корпуса судна валопровода

Изобретение относится к области судостроения, а именно к судовым двигательно-движительным установкам с уменьшенными уровнями вибрации и излучаемого шума, в которых валопровод с подшипниками смонтирован внутри рамы валопровода, виброизолированной от корпуса судна. Устройство вибродемпфирования...
Тип: Изобретение
Номер охранного документа: 0002718182
Дата охранного документа: 31.03.2020
15.05.2020
№220.018.1cf5

Способ передачи информации в многоканальной системе гидроакустической связи

Изобретение относится к технике связи и может использоваться в системе гидроакустической связи. Технический результат состоит в повышении скорости передачи сигналов связи. Для этого массив из N=2-1 циклических сдвигов М-последовательности разделяется на подмассивы. Подлежащее передаче...
Тип: Изобретение
Номер охранного документа: 0002720888
Дата охранного документа: 13.05.2020
21.05.2020
№220.018.1f0a

Автоматизированный комплекс контроля качества сварных соединений

Использование: для контроля качества сварных соединений. Сущность изобретения заключается в том, что автоматизированный комплекс контроля качества сварных соединений содержит прижимы для его крепления на контролируемом изделии, искательную головку, механизм перемещения искательной головки,...
Тип: Изобретение
Номер охранного документа: 0002721480
Дата охранного документа: 19.05.2020
21.05.2020
№220.018.1f28

Автоматизированный контроль температур при сварке

Изобретение относится к сварочному производству и может быть использовано в устройствах контроля основных параметров сварки в качестве средства автоматизированного контроля температур. Техническим результатом является расширение информативных возможностей системы автоматизированного контроля...
Тип: Изобретение
Номер охранного документа: 0002721478
Дата охранного документа: 19.05.2020
12.06.2020
№220.018.25e7

Устройство для смесеобразования в двигателях внутреннего сгорания

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания. Изобретение направлено на обеспечение повышения коэффициента полезного действия, экономичности и снижения токсичности двигателя внутреннего сгорания за счет организации управляемости процессов...
Тип: Изобретение
Номер охранного документа: 0002723260
Дата охранного документа: 09.06.2020
18.07.2020
№220.018.33ad

Стекло, упрочняемое ионным обменом

Изобретение относится к составам стекол, упрочняемых ионным обменом, предназначенных для изготовления изделий, обладающих высокими прочностными и оптическими характеристиками. Такие изделия применяются в качестве остекления авиационного, автомобильного, железнодорожного, водного и других видов...
Тип: Изобретение
Номер охранного документа: 0002726812
Дата охранного документа: 15.07.2020
26.07.2020
№220.018.3877

Судовой винтовой движитель

Изобретение относится к области судостроения и касается вопроса создания судовых гребных движителей с низким уровнем гидродинамического шума. Судовой винтовой движитель содержит ступицу и лопасти с входными и выходными участками. Поверхности выходных участков лопастей имеют волнообразную форму....
Тип: Изобретение
Номер охранного документа: 0002727788
Дата охранного документа: 23.07.2020
05.08.2020
№220.018.3ca8

Способ изготовления корундовой керамики

Изобретение относится к получению материалов для электронной техники, таких как детали СВЧ-техники, в частности сложнопрофильные керамические каркасы для микрочипов. Способ изготовления корундовой керамики включает мокрый помол глинозема, введение минерализующих добавок, получение спека, его...
Тип: Изобретение
Номер охранного документа: 0002728911
Дата охранного документа: 03.08.2020
11.05.2023
№223.018.53c5

Универсальная система обмена данными

Изобретение относится к области цифровой передачи информации. Техническим результатом является повышение отказоустойчивости системы обмена данными. Система обмена данными включает по меньшей мере четыре блока динамической маршрутизации, соединенные волоконно-оптическими линиями связи, в которой...
Тип: Изобретение
Номер охранного документа: 0002795451
Дата охранного документа: 03.05.2023
Showing 271-272 of 272 items.
19.04.2019
№219.017.3385

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ окисления монооксида углерода

Изобретение относится к катализаторам низкотемпературного окисления монооксида углерода (СО), способу их получения и способу окисления СО с целью защиты окружающей среды от загрязнений СО. Катализатор окисления монооксида углерода представляет собой композицию Pd/C-K, где: С - мезопористый...
Тип: Изобретение
Номер охранного документа: 0002446878
Дата охранного документа: 10.04.2012
27.06.2019
№219.017.992e

Катализатор, способ его получения (варианты) и способ гидрообессеривания дизельной фракции

Изобретение относится к катализаторам гидрообессеривания дизельных фракций, способу его получения (варианты) и способу гидрообессерования дизельной фракции и может применяться в отраслях нефтеперерабатывающей и нефтехимической промышленности. Предложенный катализатор представляет собой...
Тип: Изобретение
Номер охранного документа: 0002313390
Дата охранного документа: 27.12.2007
+ добавить свой РИД