×
10.05.2013
216.012.3deb

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАСТВОРОВ МЕТИЛАТОВ РЕНИЯ

Вид РИД

Изобретение

Аннотация: Предложенное изобретение относится к способу получения растворов метилатов рения электрохимическим методом. Электрохимическое растворение рения в предложенном способе проводят при анодной поляризации и при постоянных параметрах потенциала тока в безводном метиловом спирте, содержащем в качестве электропроводной добавки хлорид лития LiCl, содержание которого определяется исходя из количества, необходимого для обеспечения достаточной проводимости электролита. В качестве катода используют инертный электрод, а фиксированное значение потенциала анода составляет Е≤3,50±0,001, что обеспечивает получение продукта определенного состава, отвечающего формуле ReO(ОСН), где 0≤y≤4. Снижение температуры процесса растворения рения, повышение выхода продукта и его чистоты является техническим результатом предложенного изобретения. 2 ил., 3 пр.
Основные результаты: Способ получения оксометилатов рения электрохимическим методом, заключающийся в анодном растворении рения в обезвоженном метиловом спирте в присутствии электропроводящей добавки, отличающийся тем, что растворение рения ведут при фиксированном значении потенциала анода Е≤3,50±0,001, с получением продукта определенного состава, отвечающего формуле ReO(ОСН), где 0≤y≤4.

Изобретение относится к области химии и технологии рения, в частности электрохимическому способу получения метилатов рения, которые могут использоваться как предшественники для получения сплавов рения с другими тугоплавкими металлами, ультрадисперсных (>100 нм) и наноразмерных (<100 нм) порошков функциональных материалов на основе рения (металлического рения, оксидов рения (IV) и (VI)), нашедшие свое применение в реакциях кросс-конденсации и восстановительной дегидратации спиртов с целью получения моторных топлив и/или присадок к ним.

Алкоксотехнология является перспективной при получении при низких температурах (<500÷900°С) материалов (индивидуальные оксиды, их твердые растворы, сложные оксиды, металлы, сплавы), обладающих повышенной фазовой и химической однородностью и регулируемым гранулометрическим составом, а также ультрадисперсных и наноразмерных материалов.

Известен способ [Druce J.G.F. Ethoxides and isopropoxides of manganese and rhenium // J. of the Chemical Society. 1937. P.1407-1408] получения этилата рения Re(OEt)3 путем взаимодействия Re3Cl9 1,46 г в эфире со спиртовым раствором NaOEt (0,34 г Na; 30 с.с. EtOH). При выпаривании этоксид рения оставался в остатке.

Существенные недостатки способа заключаются в трудоемкости, необходимости использования сложного оборудования, сложности автоматизации процесса, получение исходных соединений представляет собой самостоятельную задачу синтеза.

Известен способ [Ковсман Е.П. и др. Способ получения алкоксидов титана, опубликовано / Патент РФ №2079503] получения алкоксидов титана (тетрабутоксида титана (ТБТ) и тетраизопропоксида) путем электрохимического растворения анода из титана в электролите, содержащем алканол (бутанол или изопропанол) и хлорид лития, при плотности тока 2-6 А/дм2 с циркуляцией электролита, возвратом хлорида лития и алканола в процесс и выделением целевого продукта, отличающийся тем, что используют цельнометаллический анод из титана и процесс ведут при скорости протока электролита в межэлектродном зазоре не ниже 5 см/с. Недостатком является протекание вторичных химических реакций с продуктами электрохимического окисления.

Наиболее близким техническим решением является способ [Щеглов П.А. Моно-, би- и триметаллические оксоалкоксопроизводные рения (синтез, свойства и применение). Диссер. на соиск. ученой степени кандидата хим. наук. - М.: МИТХТ им. М.В.Ломоносова, 2002, 139 с.] синтеза Re4O2(OMe)16 и Re4O6(ОМе)12 электрохимическим методом. Анодное растворение рения в среде МеОН (Me - метильная группа) осуществляли в присутствии фонового электролита LiCl (0,025 моль/л) как без разделения катодного и анодного пространств, так и с их разделением посредством мембраны из пористого стекла. Процесс вели при 18÷20°С. Выход по току составил 62 и 79%.

Основным недостатком данного метода является нестабильность получения продуктов синтеза.

Технический результат предлагаемого изобретения состоит в понижении температуры процесса, повышении выхода продукта, получении продукта, не загрязненного хлором, поскольку содержание электропроводящей добавки существенно снижено, технологической гибкости процесса и относительно низких затратах.

Технический результат достигается электрохимическим методом, заключающимся в анодном растворении рения в обезвоженном метиловом спирте в присутствии электропроводящей добавки, отличающимся тем, что растворение рения ведут при фиксированном значении потенциала анода Е≤3,50±0,01, что обеспечивает получение продукта определенного состава, отвечающего общей формуле Re4O6-у(ОСН3)12+у, где 0≤у≤4.

Сущность предложенного способа заключается в следующем. В электрохимическую ячейку помещают электролит, представляющий собой обезвоженный метиловый спирт с растворенной в нем и предварительно осушенной электропроводящей добавкой (LiCl). Концентрация LiCl определяется исходя из количества, необходимого для обеспечения достаточной проводимости, обычно 0,03-0,08 моль/л. В качестве катода используют инертный электрод, в качестве анода - металлический рений. Растворение рения ведут при фиксированном значении потенциала анода, определяющего протекание интересующей анодной реакции, что позволяет получать продукт определенного состава Re4O6-у(ОСН3)12+у, где 0≤y≤4 (Фиг.2). Потенциал анода определяют с помощью поляризационных и деполяризационных кривых, полученных с использованием электрохимического исследовательско-технологического комплекса (ЭХК-1012, ООО ИП "Тетран"), использующего некомпенсационный способ измерения потенциала [патент РФ №2106620 от 26.04.96].

Установлено, что в литературе не описано влияние потенциала электрода на получение оксометилатов рения определенного состава.

Пример 1. Анодное растворение металлического рения в метиловом спирте с добавкой LiCl 0,05-0,06 моль/л проводили в двухкамерной проточной ячейке из фторопласта (Фиг.1), суммарным объемом 100 мл. Камеры ячейки разделены катионообменной мембраной МК-40. Поток электролита с заданной скоростью в установке обеспечивается перистальтическим насосом.

С помощью поляризационных и деполяризационных кривых, полученных с использованием ЭХК-1012, выбрали технологические параметры: потенциал растворения рения Е=2,91 В, точность поддержания потенциала ΔЕ=±0,01 В, температура - 20-25°С, скорость потока - 0,4 л/ч. Выбранные параметры обеспечивают протекание единственной реакции на аноде при максимально возможной скорости и производительности процесса, ограничиваемой техническими характеристиками ЭХК-1012.

По окончании эксперимента были проведены анализы проб растворов электролита методами ИК-спектроскопии, ЭПР-спектроскопии; фотометрическим методом определена концентрация рения в анолите и католите.

Продуктами электрохимического синтеза в метиловом спирте в присутствии электропроводящей добавки при потенциале Е=2,91±0,01 В является комплекс рения (VI) Re4O6(ОСН3)12, где на один атом рения приходится один концевой оксолиганд (связь Re=O).

Пример 2. Анодное растворение металлического рения в метаноле с добавкой LiCl 0,05-0,06 моль/л проводили в двухкамерной проточной ячейке из фторопласта (Фиг.1).

При технологических параметрах: потенциал растворения рения Е≤2,91±0,01 В, температура - 20-25°С, скорость потока - 0,4 л/ч продуктом электрохимического синтеза в метиловом спирте является комплекс рения (VI) Re4O6(ОСН3)12 аналогично примеру 1.

Пример 3. Анодное растворение металлического рения в метаноле с добавкой LiCl 0,05-0,06 моль/л проводили в двухкамерной проточной ячейке из фторопласта (Фиг.1) при технологических параметрах: потенциал растворения рения Е=3,50 В, точность поддержания потенциала ΔЕ=±0,01 В, температура - 20-25°С, скорость потока - 0,4 л/ч продуктом электрохимического синтеза в метиловом спирте является комплекс Re4O2(ОСН3)16 (V), в котором отсутствуют концевые оксолиганды.

Таким образом, из описания примеров и результатов следует, что предлагаемая методика позволяет реализовывать управляемый электрохимический синтез метилатов рения. Установка фиксированных электрохимических параметров делает возможным получение воспроизводимых результатов анодного растворения.

Пояснения к фигурам.

Фиг.1 - Электрохимическая ячейка для синтеза алкоксопроизводных:

1 - корпус ячейки;

2 - токоподвод к титановому катоду;

3 - токоподвод к аноду (Re);

4 - мембрана МК-40;

5 - штуцер.

Фиг.2 - Структура Re4O6(OCH3)12.

Способ получения оксометилатов рения электрохимическим методом, заключающийся в анодном растворении рения в обезвоженном метиловом спирте в присутствии электропроводящей добавки, отличающийся тем, что растворение рения ведут при фиксированном значении потенциала анода Е≤3,50±0,001, с получением продукта определенного состава, отвечающего формуле ReO(ОСН), где 0≤y≤4.
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРОВ МЕТИЛАТОВ РЕНИЯ
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРОВ МЕТИЛАТОВ РЕНИЯ
Источник поступления информации: Роспатент

Showing 11-15 of 15 items.
13.01.2017
№217.015.77ac

Промотор адгезии на основе природного минерала шунгита для крепления резин к армирующим металлическим материалам

Изобретение относится к области резинотехнической промышленности, а именно к промотору адгезии на основе природного минерала шунгита для крепления резин к армирующим металлическим материалам, и может быть использовано при производстве резинометаллокордных шин. Промотор адгезии на основе...
Тип: Изобретение
Номер охранного документа: 0002599760
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8bad

Способ переработки электродной массы отрицательных электродов никель-кадмий-железных щелочных аккумуляторов

Изобретение относится к гидрометаллургии и может быть использовано при создании безотходных технологий утилизации вредных веществ и охране окружающей среды. В предложенном способе переработки электродной массы отрицательных электродов щелочных аккумуляторов, содержащих оксиды никеля, кадмия и...
Тип: Изобретение
Номер охранного документа: 0002604080
Дата охранного документа: 10.12.2016
19.04.2019
№219.017.33a0

Саморазрушающаяся полимерная композиция на основе полиолефина

Изобретение относится к саморазрушающейся полимерной композиции, которая предназначена для получения деструктирующих под воздействием факторов окружающей среды материалов и изделий. Композиция содержит 68-82 мас.% полиолефина, 8-32 мас.% полигидроксибутирата и 5-10 мас.% (со)полимера кетонового...
Тип: Изобретение
Номер охранного документа: 0002444544
Дата охранного документа: 10.03.2012
10.07.2019
№219.017.b0ce

Способ получения 5-замещенных 1-н-1,2,4-триазол-3-карбоновых кислот и их производных

Описывается способ получения новых 5-замещенных 1-Н-1,2,4-триазол-3-карбоновых кислот и их производных общей формулы , где R=CH; ; CH; p-CHCH, a Z=OH или OBzl, путем взаимодействия гидразида 1-бензилоксикарбонилформимидной кислоты с ацилирующим агентом общей формулы , X=Cl; ; , R имеет...
Тип: Изобретение
Номер охранного документа: 0002446163
Дата охранного документа: 27.03.2012
31.07.2020
№220.018.3971

Способ изготовления фильтрующего элемента и фильтрующий элемент

Изобретение относится к дренажно-распределительным устройствам фильтров с зернистой или насыпной загрузкой, используемых для очистки жидкостей, в том числе в системах водоподготовки. Способ изготовления фильтрующего элемента включает выполнение в металлическом трубчатом корпусе расширяющихся...
Тип: Изобретение
Номер охранного документа: 0002728273
Дата охранного документа: 28.07.2020
Showing 11-15 of 15 items.
13.01.2017
№217.015.77ac

Промотор адгезии на основе природного минерала шунгита для крепления резин к армирующим металлическим материалам

Изобретение относится к области резинотехнической промышленности, а именно к промотору адгезии на основе природного минерала шунгита для крепления резин к армирующим металлическим материалам, и может быть использовано при производстве резинометаллокордных шин. Промотор адгезии на основе...
Тип: Изобретение
Номер охранного документа: 0002599760
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8bad

Способ переработки электродной массы отрицательных электродов никель-кадмий-железных щелочных аккумуляторов

Изобретение относится к гидрометаллургии и может быть использовано при создании безотходных технологий утилизации вредных веществ и охране окружающей среды. В предложенном способе переработки электродной массы отрицательных электродов щелочных аккумуляторов, содержащих оксиды никеля, кадмия и...
Тип: Изобретение
Номер охранного документа: 0002604080
Дата охранного документа: 10.12.2016
11.03.2019
№219.016.dcd7

Способ получения порошка магнотанталата свинца со структурой типа перовскита

Изобретение относится к области получения оксидного порошка состава Pb(MgTaO) со структурой типа перовскита и может быть использовано в изготовлении материалов для пьезотехники. Способ включает смешение соединения тантала с водными растворами солей свинца и магния в стехиометрическом отношении,...
Тип: Изобретение
Номер охранного документа: 0002433955
Дата охранного документа: 20.11.2011
29.06.2019
№219.017.9e23

Способ хлорирования полиметаллического ниобий-танталсодержащего сырья и устройство для его осуществления

Группа изобретений относится к металлургии редких металлов, в частности к способу хлорного разложения полиметаллического ниобий-танталсодержащего сырья с получением хлоридов ниобия и/или тантала и устройствам (хлораторам) для осуществления процесса хлорирования. Способ включает хлорирование...
Тип: Изобретение
Номер охранного документа: 0002331680
Дата охранного документа: 20.08.2008
31.07.2020
№220.018.3971

Способ изготовления фильтрующего элемента и фильтрующий элемент

Изобретение относится к дренажно-распределительным устройствам фильтров с зернистой или насыпной загрузкой, используемых для очистки жидкостей, в том числе в системах водоподготовки. Способ изготовления фильтрующего элемента включает выполнение в металлическом трубчатом корпусе расширяющихся...
Тип: Изобретение
Номер охранного документа: 0002728273
Дата охранного документа: 28.07.2020
+ добавить свой РИД