×
27.04.2013
216.012.3b4e

Результат интеллектуальной деятельности: СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ПРОЦЕССА ИМПРЕГНИРОВАНИЯ

Вид РИД

Изобретение

Аннотация: Использование: для акустико-эмиссионного контроля процесса импрегнирования. Сущность: заключается в том, что выполняют регистрацию акустико-эмиссионного сигнала в пропиточном автоклаве, при этом производится выделение огибающей регистрируемого сигнала в реальном масштабе времени, оценка огибающей по пороговому значению, селекция формы импульсов акустической эмиссии с целью устранения влияния агрегатируемых в пропиточном растворе пузырьков газа и их схлопывания. Технический результат: повышение достоверности измерений контролируемых процессов. 4 ил.
Основные результаты: Способ акустико-эмиссионного контроля процесса импрегнирования предполагает регистрацию акустико-эмиссионного сигнала в пропиточном автоклаве, отличающийся тем, что производится выделение огибающей регистрируемого сигнала в реальном масштабе времени, оценка огибающей по пороговому значению, селекция формы импульсов акустической эмиссии с целью устранения влияния агрегатируемых в пропиточном растворе пузырьков газа и их схлопывания.

Изобретение относится к области контроля технологических процессов, связанных с импрегнированием материалов, в частности пропитка материала жидким реагентом, например в области электротехники (пропитка электродвигателей).

Процесс импрегнирования используется в различных областях промышленности с целью придания материалам нужных свойств и характеристик. Существующие методы контроля степени импрегнации обычно используются уже после завершения процесса пропитки, при этом исчезает информация о динамике самого процесса, что, как следствие, не дает возможности оптимизировать процесс импрегнирования. Наряду с этим известно явление генерации акустических волн, сопровождающее процесс импрегнирования [Д.М.Кузнецов, А.Н.Смирнов, Акустическая эмиссия в жидкости при физико-химических процессах дегазации // http://www.chemphys.edu.ru/pdf/2006-11-13-001.pdf]. Методы акустико-эмиссионного контроля различных физико-химических процессов находят широкое применение в различных областях техники, в частности широко развито направление неразрушающего контроля материалов, мониторинг опасных технологических объектов и др.

Основная решаемая задача - проведение акустико-эмиссионного контроля процесса импрегнирования, повышение достоверности измерений контролируемых процессов.

Известен способ контроля качества импрегнирования изделий смолой, заключающийся в том, что контроль качества пропитки производится по показателям привеса (количество поглощенной смолы), влагопроницаемости и глубине пропитки [Технология и оборудование электродных и электроугольных предприятий. Чалых Е.Ф. «Металлургия», М. 1972 г. С.199-205]. Для этой цели в автоклав помещается контрольный образец, производится процесс пропитки. Далее контрольный образец подвергается анализу на влагопроницаемость. Глубина пропитки определяется постепенным снятием слоев с контрольного образца с обеих сторон и последующей проверкой на влагопроницаемость.

Недостатком известного способа является тот факт, что контрольный образец может отличаться по структуре пор, газопроницаемости и габаритам от целевого изделия, подвергаемого пропитке. При изменении формы, массы целевого изделия приходится менять и контрольный образец. В том случае если в качестве контрольного образца выступает второе целевое изделие, то при последующем разрушающем анализе это изделие уже не может быть использовано. Способ не позволяет оценивать процесс пропитки в реальном масштабе времени и, как следствие, исследовать динамику процесса.

Также известен способ контроля качества пропитки жидким металлом по так называемому «привесу» [Технология и оборудование электродных и электроугольных предприятий. Чалых Е.Ф. «Металлургия», М. 1972 г. С.199-205]. Разность масс до и после пропитки (привес) позволяет определить количество металла, пошедшее на заполнение пор.

Недостатком этого способа является недостоверность определения полной степени пропитки, поскольку неизвестен свободный объем пор пропитываемого материала до начала пропитки. В результате после получения значения по привесу и определения количества металла, затраченного на пропитку, остается невыясненным вопрос полного заполнения всех пор изделия.

Более совершенным является способ контроля качества пропитки электротехнических изделий [Страна публикации SU, Номер авторского свидетельства 1384007, 27.06.2005, G01N 25/20], заключающийся в том, что в процессе пропитки в пропиточном автоклаве измеряются параметры акустической эмиссии (АЭ) в ультразвуковом диапазоне частот, а об окончании пропитки и завершении процесса импрегнирования судят по параметру суммарного счета сигналов. Предполагается, что в некоторый период времени «суммарный счет сигналов АЭ становится неизменным, что можно использовать как параметр, характеризующий завершение процесса».

Недостатками известного способа является низкая точность определения окончания процесса пропитки. Причина этого в том, что на индуцирование акустических сигналов влияет движение и схлопывание газовых пузырьков, вытесненных жидкостью из объема изделия на стадии пропитки. В случае использования в качестве импрегната (пропитывающего вещества) вязких жидкостей процесс движения газовых пузырьков продолжается еще длительное время после окончания пропитки изделия. Изменения суммарного счета в процессе пропитки оказывается не неизменным, а стабильно растущим, пусть и с медленной скоростью. Поэтому момент окончания стадии пропитки по предложенному авторами параметру не может быть точным. По параметру суммарного счета сигналов АЭ момент окончания пропитки можно определять с точностью не выше ±50 секунд.

Указанных недостатков лишен известный способ контроля качества пропитки изделий [Патент РФ №2383016, 27.02.2010, МПК G01N 29/14, Бюл. №6], заключающийся в том, что в пропиточном автоклаве осуществляются измерения суммарного счета сигналов акустической эмиссии, энергии и длительности акустических сигналов в ультразвуковом диапазоне частот, которые характеризуют процесс пропитки. Окончание пропитки и завершение процесса импрегнирования определяется по превышению энергии и длительности акустических сигналов порогового уровня стадии пропитки.

Недостатками известного способа-прототипа являются низкая точность оценки кинетики процесса импрегнирования в случае, когда пропитывающий состав представляет собой жидкость, слабо насыщаемую вытесняемыми из пропитываемого образца газа. Известный способ предполагает разделение всего процесса пропитки на несколько стадий, а именно начальную стадию пропитки, когда импрегнат заполняет крупные поры, вытесняя газовые пузырьки сравнительно большого размера, и индуцирует сигналы с относительно высокой энергией и длительностью. В процессе насыщения более мелких пор изделия жидкостью индуцированные акустические сигналы отличаются большим числом, сравнительно малой энергией и длительностью. Чем меньше размер пор изделия, тем меньше размер вытесняемых газовых пузырьков и меньше энергия АЭ. Вторая стадия процесса характеризуется прекращением вытеснения газов из пор, но при этом индуцирование сигналов АЭ продолжается, причем с более высокой энергией и длительностью по сравнению с начальной стадией. Переход от одной стадии к другой характеризует момент окончания процесса импрегнирования. Природа образования высокоэнергетических сигналов АЭ на второй стадии связана с агрегацией уже выделившихся газовых пузырьков и увеличением их размеров. Таким образом, если в качестве импрегната используется жидкость, которая в масштабах процесса не насыщается газом, использование известного способа даст ошибочные значения момента окончания процесса импрегнирования. В случае когда жидкость легко насыщаема, метод также обладает высокой погрешностью. Данное явление обусловлено тем, что процесс невозможно разделить на две стадии, используемые в известном способе. Процессы, характеризующие стадии, будут протекать одновременно.

Известный способ-прототип предполагает определение окончания процесса пропитки по превышению энергии и длительности акустических сигналов порогового уровня стадии пропитки, при этом выбор порогового уровня на начальном этапе процесса может внести дополнительную погрешность. Начальный этап любого процесса импрегнирования характеризуется высокой интенсивностью вследствие большого объема вытесняемого газа, что подтверждается приводимыми авторами известного способа данными (Фиг.1, Фиг.2). В работе [Буйло С.И. Физико-механические и статистические аспекты повышения достоверности результатов акустико-эмиссионного контроля и диагностики. - Р-н-Д.: Из-во ЮФУ, 2008. - 25-39 с.] рассматривается достоверность параметров АЭ, в частности автор характеризует параметры, полученные в процессах, сопровождающихся высокой интенсивностью АЭ, как недостаточно достоверные, а методы, использующие такие параметры, обладают высоким уровнем погрешности. Высокий уровень погрешности обусловлен перекрытием импульсов АЭ, что приводит к неправильному определению таких параметров, как суммарный счет, длительность, энергия.

К недостаткам известного способа также можно отнести высокие вычислительные затраты, связанные с определением используемых в способе параметров, энергии и длительности сигналов АЭ.

Сущность изобретения

Задачей настоящего изобретения является устранение указанных недостатков. Достижение указанной цели осуществляется с помощью предлагаемого авторами способа.

Способ акустико-эмиссионного контроля процесса импрегнирования отличается тем, что для повышения достоверности оценки процесса импрегнирования в пропиточном автоклаве производится регистрация акустико-эмиссионного сигнала, выделение огибающей регистрируемого сигнала в реальном масштабе времени, оценка огибающей по пороговому значению, селекция формы импульсов акустической эмиссии с целью устранения влияния агрегатируемых в пропиточном растворе пузырьков газа и их схлопывания.

Кинетика процесса импрегнирования зависит от многих факторов: температуры, давления в пропиточном автоклаве, физических свойств пропитываемого образца и пропитывающего состава. Описываемые факторы также влияют на акустическую эмиссию, возникающую в процессе импрегнирования. Акустико-эмиссионные параметры отражают не только кинетику процесса импрегнирования, но также и процессы, связанные с насыщением пропиточного состава вытесняемым из пор при пропитке газом, его дальнейшей агрегацией. Поскольку процесс импрегнирования, как правило, занимает существенное время (от нескольких минут до десятков часов), то очевидно, что и процессы, связанные с агрегацией вытесняемых газов, могут проходить в то же время, что и сам процесс пропитки, а в некоторых случаях завершаться вместе с процессом импрегнирования (в случае использования слабо насыщаемого газом импрегната). Акустическая эмиссия, вызванная агрегацией вытесняемых газов, имеет сравнительно большую энергию и длительность импульсов. Данное наблюдение подтверждается в способе-прототипе. Как свидетельствуют экспериментальные данные (Фиг.3), появление импульсов акустической эмиссии, связанных с агрегацией, может наблюдаться во время процесса импрегнирования. На рисунке (Фиг.3) видно, что появление импульсов АЭ со сравнительно большими значениями амплитуды наблюдается в течение всего процесса пропитки и завершается одновременно с ним. Применение способа-прототипа в данном случае даст искаженную оценку процесса импрегнирования. Более точную оценку процесса импрегнирования возможно получить, используя в качестве оцениваемых параметров огибающую сигнала акустической эмиссии. Огибающая сигнала АЭ отражает процесс пропитки, а именно его интенсивность. На рисунке (Фиг.4) показан фрагмент огибающей, выделенной при пропитывании экспериментального образца. Наряду с этим огибающая также отражает и процессы агрегации. Устранить данный недостаток возможно, введя селектор формы импульсов. Исследования показали, что процессы агрегации всегда сопровождаются импульсами АЭ, огибающая которых функционально связана с огибающей импульсной характеристики используемого преобразователя акустической эмиссии. Данное явление можно объяснить сравнительно большими значениями энергии схлопывания отдельного агрегатируемого газового пузырька по сравнению с энергией, выделяющейся при заполнения пор пропитываемого образца. Типичная импульсная характеристика преобразователя акустической эмиссии описывается выражением , где A - амплитудный коэффициент, B - параметр затухания осцилляций, связанный с потерями в преобразователе [Неразрушающий контроль: справочник: в 7 т. Под общ. ред. В.В.Клюева. Т.7: в 2 кн. - М.: Машиностроение, 2005. - с.56-61]. Селектор формы импульсов настраивается в соответствии с используемым преобразователем акустической эмиссии. При появлении в процессе пропитки импульсов акустической эмиссии, огибающая которых совпадает функционально с огибающей импульсной характеристики преобразователя АЭ, селектор формы импульсов исключает такие импульсы и пороговое оценивание огибающей полного сигнала АЭ не производится. Таким образом возможно добиться повышения достоверности оценки кинетики процесса импрегнирования.

Способ акустико-эмиссионного контроля процесса импрегнирования предполагает регистрацию акустико-эмиссионного сигнала в пропиточном автоклаве, отличающийся тем, что производится выделение огибающей регистрируемого сигнала в реальном масштабе времени, оценка огибающей по пороговому значению, селекция формы импульсов акустической эмиссии с целью устранения влияния агрегатируемых в пропиточном растворе пузырьков газа и их схлопывания.
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ПРОЦЕССА ИМПРЕГНИРОВАНИЯ
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ПРОЦЕССА ИМПРЕГНИРОВАНИЯ
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ПРОЦЕССА ИМПРЕГНИРОВАНИЯ
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ПРОЦЕССА ИМПРЕГНИРОВАНИЯ
Источник поступления информации: Роспатент

Showing 131-140 of 207 items.
10.06.2014
№216.012.d19a

Измерительный усилитель с управляемыми параметрами амплитудно-частотной характеристики

Изобретение относится к области измерительной техники, радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. Технический результат заключается в увеличении затухания выходного сигнала в диапазоне низких частот при повышенной и достаточно...
Тип: Изобретение
Номер охранного документа: 0002519429
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1a5

Трансимпедансный преобразователь сигналов лавинных фотодиодов и кремниевых фотоумножителей

Изобретение относится к области радиотехники и связи и может использоваться в системах обработки оптической информации, датчиках оптических излучений малой интенсивности, измерителях оптических сигналов в физике высоких энергий и т.п. Техническим результатом является повышение диапазона рабочих...
Тип: Изобретение
Номер охранного документа: 0002519440
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d20d

Комплементарный дифференциальный усилитель с расширенным диапазоном активной работы

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов с широким динамическим диапазоном. Техническим результатом является расширение диапазона активной работы входного каскада операционного усилителя для...
Тип: Изобретение
Номер охранного документа: 0002519544
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d220

Составной транзистор

Изобретение относится к составному транзистору, который может быть использован в качестве устройства усиления аналоговых сигналов и в структуре аналоговых микросхем различного функционального назначения. Технический результат заключается в повышении в 8÷10 раз верхней граничной частоты...
Тип: Изобретение
Номер охранного документа: 0002519563
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d38c

Теплосъемная конструкция одежды

Изобретение можно использовать в текстильной, легкой и других отраслях промышленности при изготовлении защитной одежды в условиях высоких температур окружающей среды. Теплосъемный эффект одежды зависит от свойств используемых материалов и рациональности конструкции, выполненной в виде жилета,...
Тип: Изобретение
Номер охранного документа: 0002519927
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d3dd

Измельчитель динамического самоизмельчения материала

Изобретение относится к устройствам для измельчения, применяемым в промышленности строительных материалов, в горной, химической и металлургической промышленности, и может быть использовано в дорожном строительстве, коммунальном хозяйстве, а также при переработке отходов. Измельчитель содержит...
Тип: Изобретение
Номер охранного документа: 0002520008
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d56d

Источник опорного напряжения

Устройство относится к области электротехники и может быть использовано в качестве температурно-стабильного источника опорного напряжения, определяемого удвоенной шириной запрещенной зоны. Техническим результатом является повышение выходного напряжения, а также повышение относительной...
Тип: Изобретение
Номер охранного документа: 0002520415
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d56e

Устройство для выделения модуля разности двух входных токов

Изобретение относится к области вычислительной техники, автоматики и может использоваться в различных цифровых структурах и системах автоматического управления, передачи информации и т.п. Техническим результатом является обеспечение логической операции выделения модуля разности двух входных...
Тип: Изобретение
Номер охранного документа: 0002520416
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d570

Управляемый избирательный усилитель

Изобретение относится к области радиотехники, а конкретно к управляемым избирательным усилителям. Технический результат заключается в повышении добротности АЧХ и его коэффициента усиления по напряжению на частоте квазирезонанса. Избирательный усилитель содержит источник сигнала, подключенный к...
Тип: Изобретение
Номер охранного документа: 0002520418
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d95e

Способ охлаждения конденсатора компрессионного холодильника

Предложен способ охлаждения конденсатора компрессионного холодильника, включающий использование воды и увлажнение этой водой поверхности конденсатора, отличающийся тем, что из сборника талой воды в холодильном шкафе или другого источника воды в холодильнике вода направляется в желобок, в...
Тип: Изобретение
Номер охранного документа: 0002521424
Дата охранного документа: 27.06.2014
+ добавить свой РИД