×
27.04.2013
216.012.39f6

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ

Вид РИД

Изобретение

№ охранного документа
0002480399
Дата охранного документа
27.04.2013
Аннотация: Изобретение относится к способу получения водорода из воды и может быть использовано в химической промышленности, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках. Проводят реакцию паровой каталитической конверсии метаносодержащего газа с получением продуктов реакции, содержащих водород и диоксид углерода, отделение части водорода от остальных продуктов реакции, остальные продукты реакции направляют для получения синтез-газа и кислорода в высокотемпературном электрохимическом процессе, после чего из синтез-газа на катализаторе получают метаносодержащий газ, который возвращают в начало процесса на конверсию. Высокотемпературный электрохимический процесс ведут с подачей остальных продуктов реакции на вход катодного пространства высокотемпературного электрохимического процесса, в то время как кислород выделяют в анодном пространстве, отделенном от катодного электролитическим слоем. Отделение части водорода от остальных продуктов реакции ведут за счет адсорбции или мембранного разделения газов. Изобретение обеспечивает снижение тепловых затрат на процесс получения водорода из воды, а также эффективное использование тепловой энергии ядерного реактора. 11 з.п. ф-лы.

Изобретение относится к способу получения водорода из воды и может быть использовано в химической промышленности, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках.

Известен способ получения водорода из воды, описанный в патенте РФ №2135641, дата публ. 27.08.1999, МПК C25B 1/00. Известный способ получения водорода и синтез-газа (H2/CO) включает утилизацию диоксида углерода из природных газов, в которой подвергают электролизу переменным током воду, насыщенную под давлением 1,0 МПа двуокисью углерода. Степень очистки около 98%. Технический результат: способ исключает необходимость вводить в систему химические реагенты, соответственно повышает чистоту конечного продукта. Кроме того, в ходе электролиза диоксид углерода из природного газа заменяется образующимся на катоде газообразным водородом.

Способ позволяет производить синтез-газ, который можно использовать для дальнейших процессов синтеза спиртов, диметилового эфира, аммиака или других крупнотоннажных химических продуктов.

Однако описанный способ обладает рядом недостатков, к которым можно отнести функциональные и экономические ограничения применения способа, связанные с необходимостью выделения из природного газа больших расходов диоксида углерода (превышающих по массе расход водорода примерно в 20 раз), электролиз которого требует больших энергетических и капитальных затрат. Серьезной проблемой также является разделение конечных продуктов, резко снижающее эффективность способа.

Известен способ получения водорода и синтез-газа, содержащего в основном Н2 и СО, описанный в заявке на патент США №20090235587, дата публ. 24.09.2009, МПК C10J 3/16, в котором термохимическим образом преобразовывают углеродсодержащее топливо, чтобы произвести высокотемпературное тепло и смешанный газ, включающий воду, водород, угарный газ и углекислый газ; получение водяного пара за счет термохимического преобразования углеродсодержащего топлива, подачу пара по крайней мере к одной твердооксидной ячейке электролиза; разложение пара по крайней мере в одной твердооксидной ячейке электролиза, чтобы произвести водород и кислород; и объединение, по крайней мере, части угарного газа из смешанного газа с, по крайней мере, частью водорода, чтобы произвести синтез-газ. Недостатками данного решения являются относительно большие тепловые затраты на многостадийный нагрев потока, сложность аппаратурного оформления и возможность снижения эффективности твердооксидной ячейки электролиза в связи с относительно высокой вероятностью реакции с побочными продуктами термохимического преобразования углеродсодержащего топлива.

Известен способ получения водорода и синтез-газа (RU, N2381175, кл. C01B 3/38, 30.11.2007), в котором поток, содержащий низшие алканы, имеющие от одного до четырех атомов углерода, смешивают с водяным паром и/или диоксидом углерода, пропускают через нагревающий теплообменник, где он нагревается до температуры в диапазоне 650°С-700°C - прототип. Нагретый поток для конверсии низших алканов пропускают через адиабатический реактор, заполненный насадкой катализатора. Конверсию в адиабатическом реакторе осуществляют до содержания метана не более 33%. Недостатками данного решения являются относительно большие затраты алканов и тепловой энергии на получение водорода и возможность снижения эффективности процесса при необходимости использования потока с низким содержанием алканов.

Цель настоящего изобретения состоит в том, чтобы создать новый способ, позволяющий снизить тепловые затраты на процесс получения водорода из воды, а также эффективно использовать тепловую энергию ядерного реактора.

Поставленная задача решается тем, что:

- В способе получения водорода из воды, в котором проводят реакцию паровой каталитической конверсии метаносодержащего газа с получением продуктов реакции, содержащих водород и диоксид углерода, отделение части водорода от остальных продуктов реакции, при этом остальные продукты реакции направляют для получения синтез-газа и кислорода в высокотемпературном электрохимическом процессе, после чего из синтез-газа на катализаторе получают метаносодержащий газ, который возвращают в начало процесса на конверсию.

Кроме того:

- высокотемпературный электрохимический процесс ведут с подачей остальных продуктов реакции на вход катодного пространства высокотемпературного электрохимического процесса, в то время как кислород выделяют в анодном пространстве, отделенном от катодного электролитическим слоем;

- синтез метана проводят при повышенной температуре и давлении в присутствии катализатора на основе металлов, выбранных из группы никель, родий, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения;

- конверсию метаносодержащего газа ведут при повышенной температуре и давлении в присутствии катализатора на основе металлов, выбранных из группы никель, родий, платина, иридий, палладий, их смеси или соединения;

- нагрев метаносодержащего газа перед конверсией ведут до температур 650-880°C через герметичные теплообменные поверхности;

- давление конверсии метаносодержащего газа выбирают в диапазоне от 0,1 до 7,0 МПа;

- тепло, выделяемое при синтезе метана, отводят для нагрева остальных продуктов реакции;

- отделение части водорода от остальных продуктов реакции ведут за счет адсорбции или мембранного разделения газов;

- путем регенеративного теплообмена изменяют температуры газовых потоков на входе и выходе паровой каталитической конверсии метаносодержащего газа;

- на выходе паровой каталитической конверсии метаносодержащего газа от продуктов реакции путем адсорбции или конденсации отделяют воду, которую возвращают на вход конверсии;

- в высокотемпературном электрохимическом процессе электролитический материал предпочтительно выбирают из группы, включающей легированный оксид циркония, легированный оксид церия, галлаты и протон-проводящие электролиты;

- в высокотемпературном электрохимическом процессе материал катодного слоя выбирают из группы, включающей манганиты, ферриты, кобальтиты и никелаты или их смеси, а также лантан-стронциевый манганат, лантаноид-стронциевый оксид железа и кобальта.

Примером реализации изобретения служит способ получения водорода из воды, описанный ниже.

В излагаемом примере осуществления изобретения в качестве метаносодержащего газа применяется метан, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам синтеза метана из синтез-газа, хотя при реализации способа важным признаком является именно применение метаносодержащего газа с составом, который установится после процесса синтеза, в который подают синтез-газ, полученный в высокотемпературном электрохимическом процессе.

Совокупность реакций, происходящих при реализации изобретения, изложена ниже:

Метан с давлением выше 4.0 МПа подогревают до температуры около 400°C и нагретый поток газа смешивают с перегретым потоком пара высокого давления до соотношения пар/газ, например, равного 5.0-6.0. Образовавшийся поток направляют в первую секцию нагревающего теплообменника, в котором нагревают теплоносителем ядерного реактора через герметичные теплообменные поверхности до температуры в диапазоне 650°C-880°C, и направляют в адиабатический реактор, заполненный насадкой катализатора, в качестве которого, например, предпочтительно использовать никелевый катализатор типа ГИАП-16. Могут также применяться и катализаторы на основе других активных металлов, выбранных из группы родий, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения. Степень конверсии метана по реакции (1) увеличивается с ростом отношения пар/газ и температуры нагрева, однако нагрев ограничен стойкостью соответствующих герметичных поверхностей. С другой стороны, возможности нагрева теплоносителя в активной зоне реактора также могут ограничивать его температуры, однако ниже температуры 650°C степень конверсии метана оказывается слишком низкой.

В адиабатическом реакторе производят частичную конверсию метана (1), после чего поток с температурой около 600°C направляют на нагрев до температуры 800-880°C, а затем в адиабатический реактор 2-ой ступени, а затем из потока частично удаляют водяной пар и, в соответствии с суммарной реакцией, - продукционный водород, выделяемый за счет адсорбции или мембранного разделения газов.

Теплоноситель ядерного реактора, охлажденный при нагреве потока, с температурой 600-750°C направляют на получение водяного пара высокого давления в диапазоне ориентировочно от 9.0 до 24.0 МПа, который направляют с температурой 510-600°C на вход в паровую турбину для выработки электроэнергии. Из турбины, после частичного срабатывания энтальпии водяного пара высокого давления, отбирают водяной пар с давлением 4.1-4.4 МПа и направляют его на смешение с потоком. В свою очередь, остальные продукты реакции после отделения водорода и частично водяного пара низкого давления направляют для электролиза в высокотемпературном электрохимическом процессе (2), в котором при подводе электрической энергии осуществляют подачу продуктов реакции (1) на вход катодного пространства высокотемпературного электрохимического процесса (2), в то время как кислород выделяют в анодном пространстве, отделенном от катодного электролитическим слоем. На выходе катодного пространства реакционный поток содержит преимущественно синтез-газ, который направляют на синтез метана (2) с применением катализатора, преимущественно на основе никеля. Может применяться, например, промышленный катализатор типа АНКМ (ТУ 2178-036-47317879-97 с изм.1). Таким образом, реакцию (2) частично проводят в высокотемпературном электрохимическом процессе при подводе электроэнергии и образовании на аноде продукционного кислорода, а окончательно в каталитическом синтезе метана при отводе тепла, учитывающем экзотермический характер образования метана из синтез-газа. Результирующий поток содержит не только метан (40-60%), который рассмотрен в данном примере, но и другие компоненты смеси, включая водяной пар, водород (8-12%), моно- и диоксид углерода (менее 1%). Таким образом, реакцию паровой каталитической конверсии метаносодержащего газа (1) ведут с учетом данного состава по описанному выше процессу.

Суммарный процесс разложения воды в предложенном изобретении описывается реакцией (3), в которой удается получить из воды водород и кислород высокой чистоты с необходимым для дальнейшего использования давлением.

Таким образом, в предложенном изобретении удалось снизить тепловые затраты на процесс получения водорода из воды и эффективно использовать энергетический потенциал ядерного реактора, что позволяет рассчитывать на высокую экономическую эффективность.

Полученные продукты разложения воды - газообразные водород и кислород могут затем использовать в химической промышленности и металлургии, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках.

Источник поступления информации: Роспатент

Showing 21-30 of 262 items.
20.08.2013
№216.012.6211

Способ получения радиоизотопа молибден-99

Заявленное изобретение относится к способу получения радиоизотопа молибден-99 путем облучения мишени, содержащей молибден или его соединения, в потоке нейтронов ядерно-физической установки. В заявленном способе в качестве мишени используют структурированный материал, состоящий из наночастиц...
Тип: Изобретение
Номер охранного документа: 0002490737
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.733d

Способ модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе,...
Тип: Изобретение
Номер охранного документа: 0002495158
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.749c

Способ получения композитного материала для электрода суперконденсатора

Изобретение относится к способу получения композитного материала для электрода суперконденсатора, включающему синтез электропроводящих полимеров или их замещенных производных в процессе окислительной полимеризации соответствующих мономеров на поверхности углеродных материалов. Экологически...
Тип: Изобретение
Номер охранного документа: 0002495509
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7a19

Способ предварительной обработки углеродного носителя электрохимического катализатора

Изобретение относится к области электрохимии и может быть использовано в качестве подготовительного этапа производства электрокатализаторов. Описан способ предварительной обработки углеродного носителя электрохимического катализатора, заключающийся в том, что обработку углеродного носителя...
Тип: Изобретение
Номер охранного документа: 0002496919
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7cb8

Способ плазмохимической обработки углеродного носителя электрохимического катализатора

Изобретение относится к способу плазмохимической обработки углеродного носителя электрохимического катализатора. Способ заключается в том, что обработку производят в вакуумной камере, снабженной устройством для возбуждения холодной плазмы, держателем углеродного порошка, выполненным с...
Тип: Изобретение
Номер охранного документа: 0002497601
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7d4b

Способ получения водорода

Изобретение относится к области химии. Для получения водорода проводят реакцию паровой каталитической конверсии углеродсодержащей жидкости с получением продуктов реакции, содержащих водород. Продукты реакции направляют на вход катодного пространства для электролиза в высокотемпературном...
Тип: Изобретение
Номер охранного документа: 0002497748
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ff9

Способ получения радионуклида висмут-212

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. В заявленном способе в раствор, содержащий радионуклид тория и его дочерние продукты распада, добавляют ионообменную смолу, после чего раствор декантируют, а...
Тип: Изобретение
Номер охранного документа: 0002498434
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8363

Способ получения радионуклида торий-228

Изобретение относится к реакторной технологии получения радионуклидов для ядерной медицины. В заявленном способе получения радионуклида Th, включающем облучение мишени, в качестве материала мишени берут природный изотоп тория Th, мишень размещают в линейный ускоритель электронов и облучают...
Тип: Изобретение
Номер охранного документа: 0002499311
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.85eb

Способ генерации энергии в гибридной установке

Изобретение относится к способам преобразования энергии жидкого или газообразного топлива в электрическую и предназначено для гибридных транспортных средств. Способ заключается в том, что электрическую энергию аккумулируют в выбранные моменты времени в аккумуляторной батарее. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002499961
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.88c3

Одностадийный способ получения нетканого материала на основе полилактида и нетканый материал

Изобретение относится к одностадийному способу получения нетканого материала и нетканому материалу, полученному таким способом. Способ осуществляют методом электроформования из расплава на основе полилактида. Проводят каталитический синтез (со)полилактида в реакционной зоне экструдера. В...
Тип: Изобретение
Номер охранного документа: 0002500693
Дата охранного документа: 10.12.2013
Showing 21-30 of 164 items.
20.08.2013
№216.012.6211

Способ получения радиоизотопа молибден-99

Заявленное изобретение относится к способу получения радиоизотопа молибден-99 путем облучения мишени, содержащей молибден или его соединения, в потоке нейтронов ядерно-физической установки. В заявленном способе в качестве мишени используют структурированный материал, состоящий из наночастиц...
Тип: Изобретение
Номер охранного документа: 0002490737
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.733d

Способ модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе,...
Тип: Изобретение
Номер охранного документа: 0002495158
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.749c

Способ получения композитного материала для электрода суперконденсатора

Изобретение относится к способу получения композитного материала для электрода суперконденсатора, включающему синтез электропроводящих полимеров или их замещенных производных в процессе окислительной полимеризации соответствующих мономеров на поверхности углеродных материалов. Экологически...
Тип: Изобретение
Номер охранного документа: 0002495509
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7a19

Способ предварительной обработки углеродного носителя электрохимического катализатора

Изобретение относится к области электрохимии и может быть использовано в качестве подготовительного этапа производства электрокатализаторов. Описан способ предварительной обработки углеродного носителя электрохимического катализатора, заключающийся в том, что обработку углеродного носителя...
Тип: Изобретение
Номер охранного документа: 0002496919
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7cb8

Способ плазмохимической обработки углеродного носителя электрохимического катализатора

Изобретение относится к способу плазмохимической обработки углеродного носителя электрохимического катализатора. Способ заключается в том, что обработку производят в вакуумной камере, снабженной устройством для возбуждения холодной плазмы, держателем углеродного порошка, выполненным с...
Тип: Изобретение
Номер охранного документа: 0002497601
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7d4b

Способ получения водорода

Изобретение относится к области химии. Для получения водорода проводят реакцию паровой каталитической конверсии углеродсодержащей жидкости с получением продуктов реакции, содержащих водород. Продукты реакции направляют на вход катодного пространства для электролиза в высокотемпературном...
Тип: Изобретение
Номер охранного документа: 0002497748
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ff9

Способ получения радионуклида висмут-212

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. В заявленном способе в раствор, содержащий радионуклид тория и его дочерние продукты распада, добавляют ионообменную смолу, после чего раствор декантируют, а...
Тип: Изобретение
Номер охранного документа: 0002498434
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8363

Способ получения радионуклида торий-228

Изобретение относится к реакторной технологии получения радионуклидов для ядерной медицины. В заявленном способе получения радионуклида Th, включающем облучение мишени, в качестве материала мишени берут природный изотоп тория Th, мишень размещают в линейный ускоритель электронов и облучают...
Тип: Изобретение
Номер охранного документа: 0002499311
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.85eb

Способ генерации энергии в гибридной установке

Изобретение относится к способам преобразования энергии жидкого или газообразного топлива в электрическую и предназначено для гибридных транспортных средств. Способ заключается в том, что электрическую энергию аккумулируют в выбранные моменты времени в аккумуляторной батарее. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002499961
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.88c3

Одностадийный способ получения нетканого материала на основе полилактида и нетканый материал

Изобретение относится к одностадийному способу получения нетканого материала и нетканому материалу, полученному таким способом. Способ осуществляют методом электроформования из расплава на основе полилактида. Проводят каталитический синтез (со)полилактида в реакционной зоне экструдера. В...
Тип: Изобретение
Номер охранного документа: 0002500693
Дата охранного документа: 10.12.2013
+ добавить свой РИД