×
10.11.2013
216.012.7ff9

СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ВИСМУТ-212

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. В заявленном способе в раствор, содержащий радионуклид тория и его дочерние продукты распада, добавляют ионообменную смолу, после чего раствор декантируют, а ионообменную смолу высушивают и помещают в реактор, через который пропускают газ, удаляя при этом из реактора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220, и направляют газ через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада накапливают радионуклид свинец-212, который после выхода активности свинца-212 на насыщение десорбируют со стенок сорбционного устройства кислым раствором и полученный раствор направляют на колонку с ионообменной смолой, с которой периодически смывают дочерний продукт распада радионуклид висмут-212. Исходный раствор может быть смесью изотопов тория торий-228, торий-229, торий-232. В качестве газа для продувки системы используют воздух, и/или азот, и/или гелий, и/или аргон, и/или криптон, и/или ксенон. В качестве сорбционного устройства используют сосуд или сосуды, объем которых обеспечивает время пребывания радона-220, достаточное для его полного распада в радионуклид свинец-212. Техническим результатом является уменьшение трудоемкости процесса получения целевого радионуклида висмут-212. 5 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности, для терапии онкологических заболеваний.

При терапии онкологических заболеваний все более широкое применение находят α-излучающие радионуклиды. Это связано с большой начальной энергией (5-8 МэВ) и коротким пробегом (десятки микрон) α-частиц в биологических тканях, и следовательно высоким уровнем выделения энергии в области локализации распадающихся нуклидов. Носители α-излучающих радионуклидов (моноклональные антитела, пептиды) с высокой специфичностью позволяют доставлять их в опухолевый узел или метастатический очаг. Благодаря малым пробегам α-частиц возможно селективное воздействие излучения на патологические объекты с минимальной лучевой нагрузкой на окружающие здоровые ткани.

Настоящее изобретение может быть использовано для создания генераторов α-излучателей торий-228/свинец-212 (228Th/212Pb) и свинец-212/висмут-212 (212Pb/212Bi), конечные элементы цепочки распадов которых - радионуклиды свинец-212 и висмут-212, могут использоваться в составе медицинских радиофармпрепаратов.

Одним из перспективных направлений в ядерной медицине является радиоиммунотерапия с использованием α-излучателей. Применение короткоживущих α-излучающих радионуклидов для терапии онкологических заболеваний представляет интерес с радиобиологической точки зрения поскольку является наиболее эффективным способом летального поражения опухолевых клеток благодаря короткому пробегу α-частиц в ткани и высокой ионизирующей способности.

Радионуклид висмут-212, образующийся при распаде изотопа уран-232 считается одним из перспективных для использования в терапии онкологических заболеваний.

Период полураспада висмута-212 составляет 60,6 мин, средняя энергия α-частиц 7,8 МэВ. При распаде висмута-212 образуются радионуклиды таллий-208 и полоний-212, которые ведут к стабильному нуклиду свинец-208. Пробег α-частиц в биологической ткани менее 100 мкм, что соответствует всего лишь нескольким диаметрам раковой клетки, а линейная передача энергии (ЛПЭ) достигает ~80 кэВ/мкм.

Начальный элемент цепочки уран-232 - искусственный изотоп урана, образование которого происходит в ядерном реакторе при облучении природного тория (232Th, T1/2=1,5·1010 лет) в результате следующих реакций взаимодействия нейтронов и гамма-квантов с нуклидом торий-232:

232Th(n,γ)233Th→233Ра(γ,n)232Ра→232U

232Th(n,2n)231Th→231Pa(n,γ)232Pa→232U

232Th(γ,n)231Th→231Pa(n,γ)232Pa→232U.

В зависимости от условий облучения тория в реакторе равновесная концентрация урана-232 лежит в пределах 1000-6000 ppm [В.М. Мурогов, М.Ф. Троянов, А.Н. Шмелев «Использование тория в ядерных реакторах». Энергоатомиздат. М., 1983].

При облучении тория в реакторе одновременно с ураном-232 происходит образование урана-233 по следующей реакции:

232Th(n,γ)→233Th→233Ра→233U.

В результате α-распада урана-233 образуется торий-229, который в свою очередь после ряда распадов переходит в радионуклид висмут-213.

Висмут-212 является типичным генераторным радионуклидом и находит применение в радиоиммунотерапии, главным образом, в виде меченных им моноклональных антител и других молекулярных носителей. Сегодня для получения висмута-212 используют две генераторные системы - 228Th/224Ra и 224Ra/212Bi. В первой из них, радий-224, отделяется от тория-228 за счет анионообменного разделения этих радионуклидов из раствора азотной кислоты. Во втором генераторе с использованием катионообменных смол и минеральных кислот из радия-224 выделяют висмут-212 [R.W. Atcher, A.M. Friedman, J.J. Hines «An improved generator for the production of 212Pb and 212Bi from 224Ra». International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, Volume 39, Issue 4, 1988, Pages 283-286].

За прототип выбран способ получения висмута-212, описанный в патенте №2430440 «Способ получения радионуклида висмут-212». Авторы: Чувилин Д.Ю., Загрядский В.А., Прошин М.А., Панченко В.Я.

В качестве исходного сырья для получения радионуклида висмут-212 авторы использовали раствор, содержащий смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов. Для получения висмута-212 выполняли следующие процедуры:

- раствор, содержащий смесь тория-228, тория-229 и дочерних продуктов распада этих радионуклидов, помещали в колбу-барботер;

- через раствор, находящийся в барботере пропускали газ (например, воздух), пузырьки которого захватывают газообразный продукт распада - радон-220 и уносят его через аэрозольный фильтр в сорбционное устройство;

- в сорбционном устройстве (например, последовательно соединенные медицинские флаконы) радон-220 распадался в свинец-212 и оседал на внутренних стенках;

- после сорбционного устройства поток газа возвращали в барботер;

- свинец-212 смывали кислотным раствором с внутренних стенок сорбционного устройства и направляли на ионообменную колонку с катионитом Дауэкс-50;

- накопившийся в колонке висмут-212 элюировали раствором соляной кислоты и использовали по назначению.

Однако этот способ получения висмута-212 имеет ряд недостатков:

- при длительной эксплуатации барботера уменьшается объем раствора, содержащего смесь тория-228, тория-229 и дочерних продуктов распада этих радионуклидов, в результате чего требуется периодическое пополнение барботера исходным раствором;

- наличие кислых паров для получения химически чистого свинца-212 требует использования специальных материалов сорбционного устройства, стойких в агрессивных средах.

- образование водяных аэрозолей при барботировании раствора требует установки фильтров для их улавливания, которые необходимо периодически менять из-за ухудшения фильтрующих свойств.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей изобретения является устранение указанных выше недостатков прототипа, что приводит к упрощению технологического процесса получения радионуклида висмут-212.

Для решения этой задачи предложен способ получения радионуклида висмут-212 из раствора, содержащего радионуклиды тория и дочерние продукты распада этих радионуклидов, включающий удаление одного из дочерних продуктов распада тория-228 - газообразного радионуклида радон-220, транспортировку газа через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада по цепочке 220Rn→216Po→212Pb накапливают радионуклид свинец-212, который периодически десорбируют и полученный раствор направляют на колонку с ионообменной смолой, с которой периодически смывают его дочерний продукт распада радионуклид висмут-212, при этом, предварительно в раствор, содержащий радионуклиды тория и дочерние продукты распада этих радионуклидов, добавляют ионообменную смолу, после чего раствор декантируют, а ионообменную смолу с сорбированными на ней изотопами тория высушивают и помещают в реактор, через который пропускают газ, удаляя при этом из реактора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220.

Также, исходный раствор может содержать смесь радионуклидов торий-228, торий-229, торий-232 и дочерние продукты распада этих радионуклидов.

Кроме того, реактор продувают воздухом, и/или азотом, и/или гелием, и/или аргоном, и/или криптоном, и/или ксеноном.

Сорбцию радионуклида свинец-212 производят раствором кислоты или раствором смеси кислоты со спиртом, через которые продувают газ из реактора.

Поток газа после сорбционного устройства может быть возвращен в реактор.

Поток газа после сорбционного устройства может быть направлен в систему утилизации.

В предлагаемом способе получения радионуклида висмут-212 использовано наличие среди дочерних продуктов распада тория-228 газообразного радионуклида радон-220, который в результате распада по цепочке 220Rn→216Po→212Pb→212Bi приводит к образованию целевого радионуклида висмут-212. Период полураспада радона-220 составляет 55,6 сек, что обеспечивает возможность его удаления от места образования потоком газа (воздух, гелий, азот, аргон, криптон, ксенон) [Схемы распада радионуклидов. Энергия и интенсивность излучения. Публикация 38 МКРЗ. В двух частях. Часть вторая. Книга 2. М., Энергоатомиздат, 1987, стр.204-205].

Химические соединения радионуклида радон-220 не известны. Поэтому весь образовавшийся радон-220 окажется в сорбционном устройстве, кроме той части изотопов, которые распадутся за время транспортировки газа по коммуникациям.

После выделения висмут-212 используется по своему прямому назначению для приготовления медицинских препаратов, применяемых при терапии онкологических заболеваний.

Предлагаемый способ получения радионуклида висмут-212 обладает рядом преимуществ по сравнению с описанным прототипом:

- отказ от барботирования раствора, содержащего радионуклиды торий-228, торий-229 и дочерние продукты распада этих радионуклидов, исключает необходимость периодического пополнения барботера исходным раствором при его длительной эксплуатации, что упрощает технологический процесс получения целевого радионуклида висмут-212.

- отказ от использования раствора, содержащего радионуклиды торий-228, торий-229 и дочерние продукты распада этих радионуклидов, позволяет исключить из технологической цепочки фильтры, обеспечивающие удаление водяных аэрозолей, образующихся при барботировании раствора;

- использование сухой ионообменной смолы, удерживающей радионуклиды торий-228, торий-229 и дочерние продукты распада этих радионуклидов, снимает проблему коррозионной стойкости материалов сорбционного устройства и коммуникаций в агрессивных средах, поскольку в потоке газа, проходящем через реактор, отсутствуют пары кислоты.

ПРИМЕР ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В качестве исходного сырья для получения радионуклида висмут-212 используют раствор, содержащий смесь радионуклидов торий-228, торий-229, торий-232 и дочерних продуктов распада этих радионуклидов. Изотопный состав тория:

- Th-229 - 6,81%
- Th-230 ≅ 0,08%
- Th-228 - следы
- Th-232 - 93,11%.

Реализация предложенного способа получения висмута-212 начинается с удаления из исходного раствора изотопов тория путем добавления в раствор ионообменной смолы.

Для этого 20 мл раствора смеси радионуклидов торий-228, торий-229 и продуктов распада этих радионуклидов в 8М HNO3, смешивают с 5-6 мл анионита Дауэкс-1, используя свойство тория прочно связываться с функциональной группой анионита.

После выдержки в течение 1 часа практически весь торий сорбируется на смоле. Затем раствор декантируется. Влажную смолу высушивают и помещают в реактор, объемом 6-7 мл, в котором имеется два канала - вход и выход.

С помощью перистальтического насоса реактор продувают газом, например, воздухом и/или азотом и/или гелием и/или аргоном и/или криптоном и/или ксеноном (для воздуха расход составлял 60-150 мл/мин). Выделившийся при распаде тория-228 радон-220 потоком газа переносится через аэрозольный фильтр и поступает в сорбционное устройство (например, медицинские флаконы объемом по 20 мл), где распадется в свинец-212, который осаждается на стенки сорбционного устройства. Газ может быть возвращен в реактор (замкнутая система) или удален в систему утилизации (открытая система). В качестве сорбционного устройства можно использовать сосуд с раствором кислоты, или сосуд с раствором смеси кислоты со спиртом, через которые продувается газ из реактора.

Максимальная наработка свинца-212 занимает около 50 часов. Для эффективного сбора свинца-212 оптимизируют геометрические параметры накопителя - сводят к минимуму «паразитные» объемы и коммуникации, объем реактора минимизируют (отношение объема накопителя к объему реактора должно быть не менее 10). Расход газа подбирают из расчета его пребывания в накопители не менее 10 минут. Накопившийся свинец-212 смывают со стенок азотной кислоты объемом 5-7 мл и полученный раствор пропускают через колонку с катионитом Дауэкс-50. Ионы свинца-212 связываются с функциональной группой катионита. По прошествии 3-5 часов содержание висмута-212 в ионообменной колонке достигает насыщения, после чего его смывают разбавленной соляной кислотой.

По сравнению со способом, выбранным за прототип, предложенный способ получения висмута-212 позволяет, упростить технологический процесс, уменьшить его трудоемкость, снизить содержание примесных радионуклидов.

Источник поступления информации: Роспатент

Showing 1-10 of 323 items.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18bf

Эластомерная композиция на основе сополимера тетрафторэтилена и перфторалкилвиниловых эфиров

Изобретение имеет отношение к эластомерной композиции. Эластомерная композиция, выполненная на основе тройного или четверного сополимера тетрафторэтилена и перфторалкилвиниловых эфиров, содержащих цианогруппу, включает в качестве вулканизующего агента перфтордиимидоиламидин. Композиция...
Тип: Изобретение
Номер охранного документа: 0002471827
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1cc0

Способ отбора кислотоустойчивых штаммов lactobacillus helveticus

Изобретение относится к биотехнологии. Проводят предварительный отбор мутантов Lactobacillus helveticus, устойчивых к низину А в концентрации от 25 до 100 мкг/мл после культивирования их на среде MRS-бульон и MRS - агар с низином А. Отобранные низинустойчивые мутанты повторно культивируют в...
Тип: Изобретение
Номер охранного документа: 0002472854
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1daa

Способ оценки эффективности терапии у больных хроническим гломерулонефритом

Изобретение относится к медицине, а именно к урологии и молекулярной диагностике, и касается способа оценки эффективности терапии циклофосфамидом у больных хроническим гломерулонефритом. Отбирают венозную кровь, выделяют ДНК и выявляют носительство аллелей локуса +1931 А/Т MIP-1β. В случае...
Тип: Изобретение
Номер охранного документа: 0002473088
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.26b5

Способ спуска отделяющейся части ступени ракеты космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано для программного смещения координат точек падения отделяющихся частей (ОЧ) ступеней ракет космического назначения. Программу управления работой газовых ракетных двигателей и движением ОЧ ступеней ракет космического...
Тип: Изобретение
Номер охранного документа: 0002475429
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27eb

Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации

Изобретения относятся к физическому моделированию, в земных или натурных условиях, процессов в топливных баках отделяющихся ступеней ракет-носителей в условиях малой гравитации. Способ основан на введении в поток теплоносителя (ТН) микрочастиц пористых керамических элементов. Моделирование...
Тип: Изобретение
Номер охранного документа: 0002475739
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
Showing 1-10 of 193 items.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18bf

Эластомерная композиция на основе сополимера тетрафторэтилена и перфторалкилвиниловых эфиров

Изобретение имеет отношение к эластомерной композиции. Эластомерная композиция, выполненная на основе тройного или четверного сополимера тетрафторэтилена и перфторалкилвиниловых эфиров, содержащих цианогруппу, включает в качестве вулканизующего агента перфтордиимидоиламидин. Композиция...
Тип: Изобретение
Номер охранного документа: 0002471827
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1cc0

Способ отбора кислотоустойчивых штаммов lactobacillus helveticus

Изобретение относится к биотехнологии. Проводят предварительный отбор мутантов Lactobacillus helveticus, устойчивых к низину А в концентрации от 25 до 100 мкг/мл после культивирования их на среде MRS-бульон и MRS - агар с низином А. Отобранные низинустойчивые мутанты повторно культивируют в...
Тип: Изобретение
Номер охранного документа: 0002472854
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1daa

Способ оценки эффективности терапии у больных хроническим гломерулонефритом

Изобретение относится к медицине, а именно к урологии и молекулярной диагностике, и касается способа оценки эффективности терапии циклофосфамидом у больных хроническим гломерулонефритом. Отбирают венозную кровь, выделяют ДНК и выявляют носительство аллелей локуса +1931 А/Т MIP-1β. В случае...
Тип: Изобретение
Номер охранного документа: 0002473088
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.26b5

Способ спуска отделяющейся части ступени ракеты космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано для программного смещения координат точек падения отделяющихся частей (ОЧ) ступеней ракет космического назначения. Программу управления работой газовых ракетных двигателей и движением ОЧ ступеней ракет космического...
Тип: Изобретение
Номер охранного документа: 0002475429
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27eb

Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации

Изобретения относятся к физическому моделированию, в земных или натурных условиях, процессов в топливных баках отделяющихся ступеней ракет-носителей в условиях малой гравитации. Способ основан на введении в поток теплоносителя (ТН) микрочастиц пористых керамических элементов. Моделирование...
Тип: Изобретение
Номер охранного документа: 0002475739
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
+ добавить свой РИД