×
27.04.2013
216.012.39f6

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ

Вид РИД

Изобретение

№ охранного документа
0002480399
Дата охранного документа
27.04.2013
Аннотация: Изобретение относится к способу получения водорода из воды и может быть использовано в химической промышленности, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках. Проводят реакцию паровой каталитической конверсии метаносодержащего газа с получением продуктов реакции, содержащих водород и диоксид углерода, отделение части водорода от остальных продуктов реакции, остальные продукты реакции направляют для получения синтез-газа и кислорода в высокотемпературном электрохимическом процессе, после чего из синтез-газа на катализаторе получают метаносодержащий газ, который возвращают в начало процесса на конверсию. Высокотемпературный электрохимический процесс ведут с подачей остальных продуктов реакции на вход катодного пространства высокотемпературного электрохимического процесса, в то время как кислород выделяют в анодном пространстве, отделенном от катодного электролитическим слоем. Отделение части водорода от остальных продуктов реакции ведут за счет адсорбции или мембранного разделения газов. Изобретение обеспечивает снижение тепловых затрат на процесс получения водорода из воды, а также эффективное использование тепловой энергии ядерного реактора. 11 з.п. ф-лы.

Изобретение относится к способу получения водорода из воды и может быть использовано в химической промышленности, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках.

Известен способ получения водорода из воды, описанный в патенте РФ №2135641, дата публ. 27.08.1999, МПК C25B 1/00. Известный способ получения водорода и синтез-газа (H2/CO) включает утилизацию диоксида углерода из природных газов, в которой подвергают электролизу переменным током воду, насыщенную под давлением 1,0 МПа двуокисью углерода. Степень очистки около 98%. Технический результат: способ исключает необходимость вводить в систему химические реагенты, соответственно повышает чистоту конечного продукта. Кроме того, в ходе электролиза диоксид углерода из природного газа заменяется образующимся на катоде газообразным водородом.

Способ позволяет производить синтез-газ, который можно использовать для дальнейших процессов синтеза спиртов, диметилового эфира, аммиака или других крупнотоннажных химических продуктов.

Однако описанный способ обладает рядом недостатков, к которым можно отнести функциональные и экономические ограничения применения способа, связанные с необходимостью выделения из природного газа больших расходов диоксида углерода (превышающих по массе расход водорода примерно в 20 раз), электролиз которого требует больших энергетических и капитальных затрат. Серьезной проблемой также является разделение конечных продуктов, резко снижающее эффективность способа.

Известен способ получения водорода и синтез-газа, содержащего в основном Н2 и СО, описанный в заявке на патент США №20090235587, дата публ. 24.09.2009, МПК C10J 3/16, в котором термохимическим образом преобразовывают углеродсодержащее топливо, чтобы произвести высокотемпературное тепло и смешанный газ, включающий воду, водород, угарный газ и углекислый газ; получение водяного пара за счет термохимического преобразования углеродсодержащего топлива, подачу пара по крайней мере к одной твердооксидной ячейке электролиза; разложение пара по крайней мере в одной твердооксидной ячейке электролиза, чтобы произвести водород и кислород; и объединение, по крайней мере, части угарного газа из смешанного газа с, по крайней мере, частью водорода, чтобы произвести синтез-газ. Недостатками данного решения являются относительно большие тепловые затраты на многостадийный нагрев потока, сложность аппаратурного оформления и возможность снижения эффективности твердооксидной ячейки электролиза в связи с относительно высокой вероятностью реакции с побочными продуктами термохимического преобразования углеродсодержащего топлива.

Известен способ получения водорода и синтез-газа (RU, N2381175, кл. C01B 3/38, 30.11.2007), в котором поток, содержащий низшие алканы, имеющие от одного до четырех атомов углерода, смешивают с водяным паром и/или диоксидом углерода, пропускают через нагревающий теплообменник, где он нагревается до температуры в диапазоне 650°С-700°C - прототип. Нагретый поток для конверсии низших алканов пропускают через адиабатический реактор, заполненный насадкой катализатора. Конверсию в адиабатическом реакторе осуществляют до содержания метана не более 33%. Недостатками данного решения являются относительно большие затраты алканов и тепловой энергии на получение водорода и возможность снижения эффективности процесса при необходимости использования потока с низким содержанием алканов.

Цель настоящего изобретения состоит в том, чтобы создать новый способ, позволяющий снизить тепловые затраты на процесс получения водорода из воды, а также эффективно использовать тепловую энергию ядерного реактора.

Поставленная задача решается тем, что:

- В способе получения водорода из воды, в котором проводят реакцию паровой каталитической конверсии метаносодержащего газа с получением продуктов реакции, содержащих водород и диоксид углерода, отделение части водорода от остальных продуктов реакции, при этом остальные продукты реакции направляют для получения синтез-газа и кислорода в высокотемпературном электрохимическом процессе, после чего из синтез-газа на катализаторе получают метаносодержащий газ, который возвращают в начало процесса на конверсию.

Кроме того:

- высокотемпературный электрохимический процесс ведут с подачей остальных продуктов реакции на вход катодного пространства высокотемпературного электрохимического процесса, в то время как кислород выделяют в анодном пространстве, отделенном от катодного электролитическим слоем;

- синтез метана проводят при повышенной температуре и давлении в присутствии катализатора на основе металлов, выбранных из группы никель, родий, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения;

- конверсию метаносодержащего газа ведут при повышенной температуре и давлении в присутствии катализатора на основе металлов, выбранных из группы никель, родий, платина, иридий, палладий, их смеси или соединения;

- нагрев метаносодержащего газа перед конверсией ведут до температур 650-880°C через герметичные теплообменные поверхности;

- давление конверсии метаносодержащего газа выбирают в диапазоне от 0,1 до 7,0 МПа;

- тепло, выделяемое при синтезе метана, отводят для нагрева остальных продуктов реакции;

- отделение части водорода от остальных продуктов реакции ведут за счет адсорбции или мембранного разделения газов;

- путем регенеративного теплообмена изменяют температуры газовых потоков на входе и выходе паровой каталитической конверсии метаносодержащего газа;

- на выходе паровой каталитической конверсии метаносодержащего газа от продуктов реакции путем адсорбции или конденсации отделяют воду, которую возвращают на вход конверсии;

- в высокотемпературном электрохимическом процессе электролитический материал предпочтительно выбирают из группы, включающей легированный оксид циркония, легированный оксид церия, галлаты и протон-проводящие электролиты;

- в высокотемпературном электрохимическом процессе материал катодного слоя выбирают из группы, включающей манганиты, ферриты, кобальтиты и никелаты или их смеси, а также лантан-стронциевый манганат, лантаноид-стронциевый оксид железа и кобальта.

Примером реализации изобретения служит способ получения водорода из воды, описанный ниже.

В излагаемом примере осуществления изобретения в качестве метаносодержащего газа применяется метан, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам синтеза метана из синтез-газа, хотя при реализации способа важным признаком является именно применение метаносодержащего газа с составом, который установится после процесса синтеза, в который подают синтез-газ, полученный в высокотемпературном электрохимическом процессе.

Совокупность реакций, происходящих при реализации изобретения, изложена ниже:

Метан с давлением выше 4.0 МПа подогревают до температуры около 400°C и нагретый поток газа смешивают с перегретым потоком пара высокого давления до соотношения пар/газ, например, равного 5.0-6.0. Образовавшийся поток направляют в первую секцию нагревающего теплообменника, в котором нагревают теплоносителем ядерного реактора через герметичные теплообменные поверхности до температуры в диапазоне 650°C-880°C, и направляют в адиабатический реактор, заполненный насадкой катализатора, в качестве которого, например, предпочтительно использовать никелевый катализатор типа ГИАП-16. Могут также применяться и катализаторы на основе других активных металлов, выбранных из группы родий, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения. Степень конверсии метана по реакции (1) увеличивается с ростом отношения пар/газ и температуры нагрева, однако нагрев ограничен стойкостью соответствующих герметичных поверхностей. С другой стороны, возможности нагрева теплоносителя в активной зоне реактора также могут ограничивать его температуры, однако ниже температуры 650°C степень конверсии метана оказывается слишком низкой.

В адиабатическом реакторе производят частичную конверсию метана (1), после чего поток с температурой около 600°C направляют на нагрев до температуры 800-880°C, а затем в адиабатический реактор 2-ой ступени, а затем из потока частично удаляют водяной пар и, в соответствии с суммарной реакцией, - продукционный водород, выделяемый за счет адсорбции или мембранного разделения газов.

Теплоноситель ядерного реактора, охлажденный при нагреве потока, с температурой 600-750°C направляют на получение водяного пара высокого давления в диапазоне ориентировочно от 9.0 до 24.0 МПа, который направляют с температурой 510-600°C на вход в паровую турбину для выработки электроэнергии. Из турбины, после частичного срабатывания энтальпии водяного пара высокого давления, отбирают водяной пар с давлением 4.1-4.4 МПа и направляют его на смешение с потоком. В свою очередь, остальные продукты реакции после отделения водорода и частично водяного пара низкого давления направляют для электролиза в высокотемпературном электрохимическом процессе (2), в котором при подводе электрической энергии осуществляют подачу продуктов реакции (1) на вход катодного пространства высокотемпературного электрохимического процесса (2), в то время как кислород выделяют в анодном пространстве, отделенном от катодного электролитическим слоем. На выходе катодного пространства реакционный поток содержит преимущественно синтез-газ, который направляют на синтез метана (2) с применением катализатора, преимущественно на основе никеля. Может применяться, например, промышленный катализатор типа АНКМ (ТУ 2178-036-47317879-97 с изм.1). Таким образом, реакцию (2) частично проводят в высокотемпературном электрохимическом процессе при подводе электроэнергии и образовании на аноде продукционного кислорода, а окончательно в каталитическом синтезе метана при отводе тепла, учитывающем экзотермический характер образования метана из синтез-газа. Результирующий поток содержит не только метан (40-60%), который рассмотрен в данном примере, но и другие компоненты смеси, включая водяной пар, водород (8-12%), моно- и диоксид углерода (менее 1%). Таким образом, реакцию паровой каталитической конверсии метаносодержащего газа (1) ведут с учетом данного состава по описанному выше процессу.

Суммарный процесс разложения воды в предложенном изобретении описывается реакцией (3), в которой удается получить из воды водород и кислород высокой чистоты с необходимым для дальнейшего использования давлением.

Таким образом, в предложенном изобретении удалось снизить тепловые затраты на процесс получения водорода из воды и эффективно использовать энергетический потенциал ядерного реактора, что позволяет рассчитывать на высокую экономическую эффективность.

Полученные продукты разложения воды - газообразные водород и кислород могут затем использовать в химической промышленности и металлургии, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках.

Источник поступления информации: Роспатент

Showing 171-180 of 262 items.
05.12.2018
№218.016.a3b7

Способ получения комплексного соединения состава 2xefxmnf

Изобретение относится к способу получения комплексного соединения гексафторида ксенона с тетрафторидом марганца состава 2XeF×MnF и может применяться для синтеза кислородных соединений ксенона как основа средств для дезинфекции, стерилизации и детоксикации в области санитарии и медицины. Способ...
Тип: Изобретение
Номер охранного документа: 0002673844
Дата охранного документа: 30.11.2018
06.12.2018
№218.016.a40f

Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное

Использование: для создания функциональных переключаемых электронных устройств различного назначения. Сущность изобретения заключается в том, что способ перевода сверхпроводника в электронных функциональных наноразмерных устройствах из сверхпроводящего состояния в нормальное осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002674063
Дата охранного документа: 04.12.2018
26.12.2018
№218.016.ab98

Полимерный комплекс для молекулярно-прицельной терапии и способ его получения

Группа изобретений относится к фармацевтике и медицине и раскрывает полимерный комплекс для молекулярно-прицельной терапии и способ получения указанного комплекса. Полимерный комплекс характеризуется тем, что представлен в виде лиофилизата для приготовления суспензии, содержит частицы с...
Тип: Изобретение
Номер охранного документа: 0002675810
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b124

Способ постоянного поэлементного дублирования в цифровых транзисторных микросхемах

Изобретение относится к способам поэлементного дублирования в нано- и микроцифровых транзисторных микросхемах, подвергающихся воздействию радиации. Технический результат: существенное повышение отказоустойчивости микросхем по сравнению со способом дублирования без использования четырехкратного...
Тип: Изобретение
Номер охранного документа: 0002677359
Дата охранного документа: 16.01.2019
26.01.2019
№219.016.b451

Способ получения тетрафторида ксенона

Изобретение относится к технологии получения тетрафторида ксенона, используемого в медицине в качестве дезинфицирующего средства, в синтезе кислородных соединений ксенона. Для получения тетрафторида ксенона в предварительно вакуумированный реакционный сосуд из никеля или нержавеющей стали...
Тип: Изобретение
Номер охранного документа: 0002678270
Дата охранного документа: 24.01.2019
15.02.2019
№219.016.ba88

Система энергоснабжения локальных потребителей

Изобретение относится к области создания и эксплуатации энергетических систем. Система энергоснабжения локальных потребителей состоит из генераторов на основе возобновляемых источников электроэнергии и генератора на основе невозобновляемого источника энергии, топливного элемента, управляющего...
Тип: Изобретение
Номер охранного документа: 0002679685
Дата охранного документа: 12.02.2019
20.02.2019
№219.016.c221

Корпусной ядерный прямоточный реактор, охлаждаемый водой сверхкритического давления с перегревом пара, и способ его эксплуатации

Изобретение относится к области атомной энергетики и может быть использовано при разработке легководных реакторов сверхкритического давления с перегревом пара. Способ эксплуатации реактора включает размещение ТВС в активной зоне, их использование в течение определенного времени, осуществление...
Тип: Изобретение
Номер охранного документа: 0002453936
Дата охранного документа: 20.06.2012
20.02.2019
№219.016.c25b

Блок термоэлектрических преобразователей со щелочным металлом

Изобретение предназначено для повышения эффективности работы термоэлектрического преобразователя со щелочным металлом (АМТЕС), преобразующим тепловую энергию непосредственно в электрическую энергию. Изобретение может быть использовано как в наземных, так и в космических условиях, как генератор,...
Тип: Изобретение
Номер охранного документа: 0002456699
Дата охранного документа: 20.07.2012
20.02.2019
№219.016.c25f

Термоэлектрический преобразователь со щелочным металлом

Изобретение предназначено для повышения эффективности работы термоэлектрического преобразователя со щелочным металлом (АМТЕС), преобразующим тепловую энергию непосредственно в электрическую энергию. Изобретение может быть использовано как в наземных, так и в космических условиях как генератор,...
Тип: Изобретение
Номер охранного документа: 0002456698
Дата охранного документа: 20.07.2012
20.02.2019
№219.016.c289

Способ определения объема радиоактивного грунта

Изобретение относится к охране окружающей среды, в частности реабилитации радиоактивно загрязненных территорий. Способ определения объема радиоактивного грунта заключается в определении границ радиоактивно загрязненной территории, построении триангуляционных моделей верхней и нижней...
Тип: Изобретение
Номер охранного документа: 0002459298
Дата охранного документа: 20.08.2012
Showing 161-164 of 164 items.
18.05.2019
№219.017.5b1a

Способ генерации энергии

Изобретение относится к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), преимущественно к транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для транспортных средств,...
Тип: Изобретение
Номер охранного документа: 0002444637
Дата охранного документа: 10.03.2012
18.05.2019
№219.017.5b69

Способ генерации энергии в гибридной энергоустановке

Способ генерации энергии в гибридной энергоустановке, в котором окислитель направляют в камеру сгорания теплового двигателя, а также в топливный элемент. В камеру сгорания подают основное топливо. В топливный элемент подают также вторичное топливо. По меньшей мере часть продуктов, выходящих из...
Тип: Изобретение
Номер охранного документа: 0002465693
Дата охранного документа: 27.10.2012
10.11.2019
№219.017.e04b

Газовая горелка

Изобретения относится к области энергетики и химической промышленности. Газовая горелка содержит корпус, внутри которого размещен смеситель, имеющий первый и второй входные патрубки и выпускное устройство, трубопроводы для подвода горючего газа и окислителя и снабженный двумя кольцевыми...
Тип: Изобретение
Номер охранного документа: 0002705536
Дата охранного документа: 07.11.2019
06.02.2020
№220.017.fffe

Комплекс по производству, хранению и распределению водорода

Изобретение относится к сооружению и эксплуатации подземных резервуаров и хранилищ в отложениях каменной соли и может быть использовано в нефтяной, газовой, химической и других отраслях промышленности. Комплекс по производству, хранению и распределению водорода включает в себя по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002713349
Дата охранного документа: 04.02.2020
+ добавить свой РИД