×
26.01.2019
219.016.b451

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТЕТРАФТОРИДА КСЕНОНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения тетрафторида ксенона, используемого в медицине в качестве дезинфицирующего средства, в синтезе кислородных соединений ксенона. Для получения тетрафторида ксенона в предварительно вакуумированный реакционный сосуд из никеля или нержавеющей стали подают фтор при давлении 20 ата. Затем подают ксенон до суммарного давления 27-28 ата. Смесь ксенона и фтора выдерживают в течение не менее 35 минут для полного перемешивания. Затем смесь поджигают с помощью инициатора горения, нагретого импульсом тока до 650-700°С. Осуществляют реакцию горения ксенона во фторе с получением целевого продукта. Изобретение позволяет получить XeFв одну стадию, повысить производительность и выход продукта. 5 пр.

Изобретение относится к технологии получения фторидов ксенона, конкретно, к технологии получения тетрафторида ксенона, который может быть использован в микро-и наноэлектронике, медицине, как дезинфицирующее средство, в синтезе кислородных соединений ксенона.

Известен способ получения фторидов ксенона путем взаимодействия ксенона с фторуглеродами в электрическом разряде, образующемся вне реакционного сосуда (Патент Великобритании, 1056657, 1965). В этом способе имеет место прохождение последовательно-параллельных взаимодействий, вследствие чего образуется смесь фторидов ксенона, из которой выделение тетрафторида ксенона в чистом виде затруднительно.

Также известен СПОСОБ ПОЛУЧЕНИЯ ДИФТОРИДА КСЕНОНА, СПОСОБ ЕГО ОЧИСТКИ ОТ ВЗРЫВООПАСНЫХ ПРИМЕСЕЙ И ЕГО ИСПОЛЬЗОВАНИЕ (патент РФ №2232711 от 20.07.2004), заключающийся в том, что проводят взаимодействие ксенона и фтора в тлеющем разряде переменного тока в реакционном сосуде из фторопласта-4 при температуре от -80°С до 0°С, давлении 10-40 мм.рт.ст., силе тока 30-50 мА, мольном соотношении ксенона ко фтору 1:(0,7-1,2) и последующую стабилизацию продукта на стенках реакционного сосуда при температуре от -70°С до -80°С. Целевой продукт, получаемый таким способом, является смесью фторидов ксенона (XeF2, XeF4, XeF6), а сам способ имеет низкую производительность.

Также известен способ получения дифторида ксенона путем взаимодействия ксенона и фтора в реакционном сосуде. В предварительно вакуумированный сосуд подают фтор при давлении 10 ата и ксенон до суммарного давления 20-21 ата и выдерживают не менее 15 минут до полного перемешивания. Далее нагревают импульсом дока инициатор горения до 600-650°С и осуществляют реакцию горения ксенона во фторе с получением целевого продукта. При этом инициатор горения представляет собой спираль из никелевой проволоки или пластину из никелевой фольги. Способ позволяет повысить производительность процесса получения дифторида ксенона и получить целевой продукт с содержанием 98-99%. (патент РФ №2455 227).

Проблемой, решаемой данным изобретением является создание высокопроизводительного способа получения наиболее востребованного в промышленности соединения фторида ксенона - тетрафторида ксенона.

Техническим результатом, на который направлено изобретение, является получение тетрафторида ксенона с высокой производительностью и содержанием целевого продукта 97-98%.

Тетрафторид ксенона более востребован в промышленности, чем другие фториды в. Тетрафторид ксенона имеет более высокое содержание фтора, более низкое давление пара (1÷2 мм.рт.ст.) чем дифторид ксенона и предпочтительнее дифторида ксенона для применения в процессах дезинфекции, детоксикации. Кроме того, тетрафторид ксенона используется в синтезе кислородных соединений ксенона в отличие от XeF2. Нам неизвестен безопасный и высокопроизводительный способ получения тетрафторида ксенона в одну стадию

Для достижения указанного результата предложен способ получения тетрафторида ксенона путем взаимодействия ксенона и фтора в предварительно вакуумированном реакционном сосуде, в который подают фтор при давлении 20 ата и ксенон до суммарного давления 27-28 ата, выдерживают не менее 35 мин для полного перемешивания, после чего нагревают импульсом тока инициатор горения до 650-700°С и осуществляют реакцию горения ксенона во фторе с получением целевого продукта.

Способ осуществляется следующим образом. В реактор, например, из никеля или из нержавеющей стали объемом 8 литров и высотой 50 см, предварительно вакуумированный до остаточного давления ≈ 0,5 мм.рт.ст.и проверенный на герметичность, напускают фтор до давления 20 ата и затем через размещенную по центру реактора перфорированную никелевую трубку напускают ксенон до суммарного давления 27-28 ата. Напуск ксенона через перфорированную трубку значительно ускоряет перемешивание смеси фтора и ксенона. Смесь выдерживают не менее 35 минут до полного перемешивания. После этого инициатор горения, например, им может быть пластина из никелевой фольги или никелевая проволока, или спираль, расположенный в нижней части реактора, импульсом тока нагревается до 650-700°С, смесь воспламеняется и реакция горения ксенона во форе протекает за несколько секунд. Стенка реактора нагревается до 70-80°С. Реактор охлаждают до комнатной температуры и избыток фтор перепускают в ресивер. Реактор нагревают до 160±10°С и расплавленный продукт реакции сливают в приемную емкость, охлаждаемую жидким азотом. В результате получается продукт с содержанием XeF4 97-98% в количестве 470 г. Основная примесь -дифторид ксенона.

Параметры процесса имеют определенные ограничения. При недостаточной полноте перемешивания ксенона и фтора смесь может не воспламениться, или горение будет неустойчивым, в результате чего образуется смесь продуктов неопределенного состава. Увеличение концентрации ксенона в исходной смеси приводит к образованию продукта с высоким содержанием XeF2. Уменьшение концентрации ксенона в исходной смеси приводит к снижению производительности процесса. Повышение начального давления фтора и увеличение его доли в смеси может привести к неконтролируемому самовоспламенению смеси в процессе приготовления смеси ксенона и фтора.

Пример 1. В никелевый реактор объемом 8 литров и высотой 50 см подано 20 ата фтора. Затем подан ксенон до суммарного давления 28 ата (соотношение XeF2=1:2,5). Смесь для перемешивания выдержана в течение 35 минут. Поджиг смеси осуществлен с первого раза. В качестве инициатора использовали пластину из никелевой фольги. Синтезировано 535 г продукта. Выход тетрафторида ксенона составляет « 97%. Содержание XeF2 в продукте ≈ 2,3% (по данным иодометрического анализа).

Пример 2. В реактор подано 20 ата фтора. Затем подан ксенон до суммарного давления 27 ата. Смесь выдержана в течение 35 минут. Поджиг смеси осуществлен с первого раза с использованием в качестве инициатора пластины из никелевой фольги. Синтезировано 473 г продукта. Выход составил 98%. Содержание XeF2 в продукте ≈ 1,2%.

Пример 3. В реактор подано 20 ата фтора. Затем подан ксенон до суммарного давления смеси 27 ата. Смесь выдержана 20 минут. Поджиг осуществлен со второй попытки. Примерно пятая часть смеси не прореагировала, судя по оставшемуся давлению смеси. Синтезировано 378 г продукта с содержанием XeF4 ≈ 76%.

Пример 4. В реактор подано 19 ата фтора. Затем подан ксенон до суммарного давления 28 ата. Смесь выдержана 35 минут. Поджиг смеси осуществили с первого раза. Синтезировано 604 г продукта. Выход XeF4 составил 97%. Содержание XeF2 ≈ 2,8%.

Пример 5. В реактор подано 22 ата фтора. Затем подан ксенон до суммарного давления 28 ата. Через 9 минут произошло самовоспламенение смеси. Реакция не прошла полностью. Около 1/6 смеси не прореагировало.

Таким образом, впервые предложен высокопроизводительный и безопасный способ получения тетрафторида ксенона в закрытом объеме с высокой степенью чистоты, который может быть использован для производства тетрафторида ксенона в промышленных масштабах для дальнейшего применения в качестве дезинфицирующего средства, в синтезе кислородных соединений ксенона.

Способ получения тетрафторида ксенона путем взаимодействия ксенона и фтора в предварительно вакуумированном реакционном сосуде, в который подают фтор при давлении 20 ата и ксенон до суммарного давления 27-28 ата, выдерживают не менее 35 мин для полного перемешивания, после чего нагревают импульсом тока инициатор горения до 650-700°С и осуществляют реакцию горения ксенона во фторе с получением целевого продукта.
Источник поступления информации: Роспатент

Showing 1-10 of 259 items.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304b

Ядерная паропроизводительная установка

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых...
Тип: Изобретение
Номер охранного документа: 0002477898
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304f

Способ формирования проводников в наноструктурах

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы...
Тип: Изобретение
Номер охранного документа: 0002477902
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32e2

Способ извлечения гелия из природного газа

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании гелия из природного газа. Способ извлечения гелия из природного газа включает получение гелиевого концентрата с последующей его низкотемпературной или...
Тип: Изобретение
Номер охранного документа: 0002478569
Дата охранного документа: 10.04.2013
Showing 1-6 of 6 items.
20.08.2013
№216.012.6211

Способ получения радиоизотопа молибден-99

Заявленное изобретение относится к способу получения радиоизотопа молибден-99 путем облучения мишени, содержащей молибден или его соединения, в потоке нейтронов ядерно-физической установки. В заявленном способе в качестве мишени используют структурированный материал, состоящий из наночастиц...
Тип: Изобретение
Номер охранного документа: 0002490737
Дата охранного документа: 20.08.2013
20.03.2016
№216.014.c8df

Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Мо), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). В заявленном способе производство радиоизотопа молибден-99 по реакции Мо(n,γ)Мо, осуществляемой в потоке тепловых нейтронов...
Тип: Изобретение
Номер охранного документа: 0002578039
Дата охранного документа: 20.03.2016
12.01.2017
№217.015.62a8

Способ изготовления наноструктурированной мишени для производства радиоизотопов молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). Способ изготовления мишени для производства радиоизотопа молибден-99 осуществляется посредством реакции Mo(n,γ)Mo, протекающей в...
Тип: Изобретение
Номер охранного документа: 0002588594
Дата охранного документа: 10.07.2016
12.09.2018
№218.016.867e

Способ изготовления наноструктурированной мишени для производства молибден-99

Изобретение относится к технологии получения радионуклидов и может быть использовано для производства радионуклида молибден-99 высокой удельной активности (без носителя), являющегося основой для создания радионуклидных генераторов технеция-99, нашедших широкое применение в ядерной медицине для...
Тип: Изобретение
Номер охранного документа: 0002666552
Дата охранного документа: 11.09.2018
05.12.2018
№218.016.a3b7

Способ получения комплексного соединения состава 2xefxmnf

Изобретение относится к способу получения комплексного соединения гексафторида ксенона с тетрафторидом марганца состава 2XeF×MnF и может применяться для синтеза кислородных соединений ксенона как основа средств для дезинфекции, стерилизации и детоксикации в области санитарии и медицины. Способ...
Тип: Изобретение
Номер охранного документа: 0002673844
Дата охранного документа: 30.11.2018
07.06.2019
№219.017.7537

Способ изготовления наноструктурированной мишени для производства радионуклида мо-99

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида молибден-99 (Мо) высокой удельной активности (без носителя), являющегося основой создания радионуклидных генераторов технеция-99m (Tc), нашедших широкое применение в...
Тип: Изобретение
Номер охранного документа: 0002690692
Дата охранного документа: 05.06.2019
+ добавить свой РИД