×
27.02.2013
216.012.2c7c

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ ТУРБОРЕАКТИВНОГО ДВУХКОНТУРНОГО ДВИГАТЕЛЯ СО СМЕШЕНИЕМ ПОТОКОВ

Вид РИД

Изобретение

№ охранного документа
0002476915
Дата охранного документа
27.02.2013
Аннотация: Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе в двигатель, V - скорость полета летательного аппарата. Тягу двигателя для диагностики контролируют по отклонению R от эталонного значения, соответствующего тяге данного двигателя до начала эксплуатации. Изобретение позволяет повысить точность диагностики технического состояния двигателя в условиях эксплуатации. 1 ил.
Основные результаты: Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков (ТРДД), включающий измерение полетной информации, ее обработку и контроль тяги для диагностики ТРДД, отличающийся тем, что замеряют скорость полета летательного аппарата (V), характеризующую скорость набегающего на вход в двигатель потока воздуха, частоту вращения (n) вала низкого давления, статическое давление (Р) атмосферного воздуха, полную температуру (T ) воздуха на входе в двигатель, полное давление за компрессором низкого давления (Р ), полное давление за турбиной (Р ), положение створок реактивного сопла, характеризующее площадь критического сечения реактивного сопла (F), по замерам определяют величину R идеальной тяги двигателя как R=R-GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе в двигатель, и контролируют тягу двигателя по отклонению R от эталонного значения, соответствующего тяге данного ТРДД до начала эксплуатации, причем условную тягу R определяют в соответствии с алгоритмом следующим образом:- определяют параметр , пропорциональный полному давлению на входе в реактивное сопло как где - отношение значений площади на входе в камеру смешения из первого и второго контура соответственно,- определяют условное значение приведенной скорости λ в выходном сечении реактивного сопла, соответствующее полному расширению в нем выхлопной струи до атмосферного давления по функции, обратной газодинамической функции π(λ), по предварительно вычисленному параметру, характеризующему располагаемый перепад давлений в реактивном сопле - определяют условную площадь F выходного сечения сопла, соответствующую полному расширению выхлопной струи до атмосферного давления определяют условную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления с учетом входного импульса GV определяют величину идеальной тяги двигателя, соответствующей полному расширению выхлопной струи в реактивном сопле до атмосферного давления R=R-GV, где q(λ), r(λ) - газодинамические функции,F - площадь критического сечения реактивного сопла;λ - приведенная скорость газа в выходном сечении сопла, соответствующая полному расширению выхлопной струи до атмосферного давления.

Изобретение относится к области авиационной техники, а более точно касается диагностики состояния турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм).

Известен способ диагностики агрегатов летательных аппаратов по техническому состоянию, при котором с помощью комплекта датчиков: давления температуры, вибрации и т.д., блока коммутации и регистрации параметров, связанного с индикатором контроля и оповещения, регистрируют параметры, определяющие работу двигателя, накопленную повреждаемость каждой основной детали двигателя с учетом режимов работы двигателя, и по ним определяют остаточный ресурс двигателя (заявка РФ №2002106177).

Известен способ диагностики авиационных двигателей сетевой системой, в котором измеряют параметры, характеризующие работу авиационного двигателя, датчиками, установленными на авиационном двигателе. Аппаратные средства диагностического сервера с базой данных и программными средствами считывают в сетевых линиях связи данные, характеризующие полетную работу, и данные неразрушающего контроля авиационного двигателя и, обработав их в соответствии с базами данных и математических моделей, выдают диагностику технического состояния авиационного двигателя в сетевые линии связи (патент РФ на ПМ №87816).

Известен способ диагностики двигателя, основанный на способе контроля тяги турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм) (В.О.Боровик, В.М.Борщанский, В.А.Зозулин. Контроль величины тяги авиационных турбореактивных двигателей в условиях эксплуатации в сб. «Некоторые вопросы расчета и экспериментального исследования высотно-скоростных характеристик ГТД», Труды ЦИАМ №663, 1975, стр.240-254), в котором измеряют значения полного давления на входе в двигатель (Р*H), за компрессором низкого давления (Р*B) и за турбиной (Р*T), а также площади Fвых выходного сечения реактивного сопла, обработав их, по ним определяют значение параметров или характеризующих величину тяги двигателя (где а FI и FII - значения площади на входе в камеру смешения из первого и второго контура соответственно).

Недостатком данного способа является то, что он ограничивает контроль тяги двигателя только взлетным режимом, так как фактически оценивает значение тяги сопла без учета входного импульса набегающего потока.

Кроме того, рассмотренный способ не позволяет осуществлять диагностику двигателя по величине определенной таким образом тяги, так как оценивает значение действительной тяги с учетом реальных ограничений, например по максимальной площади раскрытия выходного сечения реактивного сопла; в силу чего полученное значение тяги не характеризует в полной мере потенциальные возможности двигателя. Поэтому рассмотренный известный способ ограничивает возможности диагностики двигателя, с одной стороны, областью применения (только взлетный режим), а с другой - не учетом потенциальных возможностей двигателя при наилучшем его регулировании, так как оценивает тягу при конкретно реализованном (возможно, неоптимальном) регулировании двигателя.

В основу изобретения положена задача повышения адекватности диагностики технического состояния ТРДДсм в условиях эксплуатации.

Технический результат - расширение функциональных возможностей диагностики турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм) за счет диагностики его технического состояния на всех режимах работы и определения степени ухудшения характеристик данного ТРДДсм с наработкой.

Поставленная задача решается тем, что в способе диагностики турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм), включающем измерение полетной информации, ее обработку и контроль тяги для диагностики ТРДДсм, замеряют скорость полета летательного аппарата (Vп), характеризующую скорость набегающего на вход в двигатель потока воздуха, частоту вращения (nв) вала низкого давления, статическое давление (РH) атмосферного воздуха, полную температуру (ТBX*) воздуха на входе в двигатель, полное давление за компрессором низкого давления (Р*в), полное давления за турбиной (Р*т), положение створок реактивного сопла, характеризующее площадь критического сечения реактивного сопла (Fкр), по замерам определяют величину Rn.p идеальной тяги двигателя как Rn.p=Rcn.p-GBVП, где Rcn.p - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, Gв - расход воздуха на входе в двигатель, и контролируют тягу двигателя по отклонению Rn.p от эталонного значения, соответствующего тяге данного ТРДДсм до начала эксплуатации.

Предложенный способ основывается на использовании газодинамических соотношений, в том числе газодинамических функций π(λ), q(λ) и r(λ), для определения полного импульса сопла (см. Абрамович Г.Н. Прикладная фазовая динамика. В 2 ч. 3-е изд., перераб. и доп. - М.: Наука., 1991. - Ч.1, стр.241-246), позволяющих определять параметр тяги по осредненному значению полного давления перед соплом.

Значение тяги Rn.p, с учетом входного импульса GВVП следует определять в соответствии с алгоритмом следующим образом:

- определяют параметр , пропорциональный полному давлению на входе в реактивное сопло как где - отношение значений площади на входе в камеру смешения из первого и второго контура соответственно,

- определяют условное значение приведенной скорости λс п.р в выходном сечении реактивного сопла, соответствующее полному расширению в нем выхлопной струи до атмосферного давления по функции, обратной газодинамической функции π(λ), по предварительно вычисленному параметру, характеризующему располагаемый перепад давлений в реактивном сопле

- определяют условную площадь Fcn.p выходного сечения сопла, соответствующую полному расширению выхлопной струи до атмосферного давления

- определяют условную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления

- с учетом входного импульса GВVП определяют величину идеальной тяги двигателя, соответствующей полному расширению выхлопной струи в реактивном сопле до атмосферного давления Rn.p=Rcn.p-GВVП, где q(λ), r(λ)- газодинамические функции;

Fкр - площадь критического сечения реактивного сопла;

λсп.р - приведенная скорость газа в выходном сечении сопла, соответствующая полному расширению выхлопной струи до атмосферного давления;

GB - расход воздуха через двигатель, который определяют расчетным путем по измеренному значению частоты вращения вала низкого давления nB, характеризующему приведенный расход воздуха через двигатель, измеренному значению полного давления за компрессором низкого давления Р*в и измеренному значению полной температуры воздуха на входе в двигатель ТBX*.

Способ, согласно изобретению, осуществляют следующим образом. При работе ТРДДсм измеряют текущие параметры, характеризующие работу ТРДДсм в полете, и обрабатывают результаты измерений по алгоритму с получением значения диагностического параметра, характеризующего текущую величину идеальной тяги ТРДД, соответствующей полному расширению в реактивном сопле выхлопной струи до атмосферного давления, и по его отклонению от эталонного значения проводят диагностику состояния ТРДДсм.

Согласно изобретению в качестве параметров, характеризующих работу ТРДДсм в полете, используют данные датчиков термогазодинамических параметров двигателя и самолета, а также частоты вращения ротора и критического сечения реактивного сопла, а именно: скорость набегающего на вход в двигатель потока воздуха (VП), частоту вращения вала низкого давления (nв), статическое давление атмосферного воздуха (РH), полную температуру воздуха на входе в двигатель (Т*вх), полное давление за компрессором низкого давления и полное давления за турбиной (Р*в и Р*т) соответственно, а также площадь критического сечения реактивного сопла (Fкр).

Исходя из значений измеренных параметров, их обрабатывают по вышеуказанному алгоритму и определяют:

- параметр , пропорциональный полному давлению на входе в реактивное сопло , где отношение значений площади на входе в камеру смешения из первого и второго контура соответственно;

- условное значение приведенной скорости λс п.р в выходном сечении реактивного сопла, соответствующее полному расширению в нем выхлопной струи до атмосферного давления по функции, обратной газодинамической функции π(λ), по предварительно вычисленному параметру, характеризующему располагаемый перепад давлений в реактивном сопле

- условную площадь выходного сечения сопла, соответствующую полному расширению выхлопной струи до атмосферного давления где q(λ) - газодинамическая функция;

- условную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления где r(λ) - газодинамическая функция;

- параметр Rn.p=Rcn.p-GВVП, характеризующий идеальную тягу двигателя, соответствующую полному расширению выхлопной струи в реактивном сопле до атмосферного давления Rn.p=f(Rcn.p,nв,Vn,P*в,T*вх) с учетом входного импульса GВVП.

Расход воздуха GВ определяют расчетным путем по измеренному значению частоты вращения вала низкого давления nв, характеризующему приведенный расход воздуха через двигатель, измеренному значению полного давления за компрессором низкого давления Р*в и измеренному значению полной температуры воздуха на входе в двигатель Твх*.

Контролируют состояние двигателя по отклонению тяги Rn.p от ее эталонного значения, соответствующего данному ТРДДсм до начала эксплуатации, которое определяют по номограммам или математической модели двигателя.

Параметр Rcn.p учитывает идеальную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления, что позволяет расширить возможность диагностики состояния ТРДДсм на всех режимах его работы.

Параметр в виде разницы Rn.p и ее эталонного значением, соответствующего данному двигателю до начала эксплуатации, характеризует степень ухудшения характеристик данного ТРДДсм с наработкой, и его учет позволяет расширить возможность диагностики состояния ТРДДсм.

Изобретение иллюстрируется рисунком, на котором схематично представлена система для реализации способа.

Система для диагностики ТРДДсм 1 как объекта контроля на летательном аппарате 10 включает датчик 2 скорости полета летательного аппарата (VП), характеризующей скорость набегающего на вход в двигатель потока воздуха, датчик 3 частоты вращения (nв), характеризующей частоту вращения вала низкого давления, датчик 4 давления (РH), характеризующего статическое давление атмосферного воздуха, датчик 5 температуры (Твх*), характеризующей полную температуру воздуха на входе в двигатель, датчики 6 и 7 давления (Р*в и Р*т), характеризующего полное давление за компрессором низкого давления и полное давление за турбиной соответственно.

Система включает также датчик 8 положения створок реактивного сопла, характеризующего площадь критического сечения реактивного сопла (Fкр), программный блок 9 контроля тяги и регистрирующий прибор - индикатор 11, связанный с выходом программного блока 9.

Программный блок 9 выполнен с возможностью определять условную тягу Fcp реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления, и условную тягу двигателя, соответствующую полному расширению выхлопной струи в реактивном сопле до атмосферного давления в виде функции Rn.p=f(Rcn.p, nB, Vn, P*B, T*вх), учитывающей входной импульс GВVП, где GВ - расход воздуха на входе в двигатель, VП - скорость полета летательного аппарата.

Индикатор 11 отображает отклонение полученной величины от эталонной, соответствующей данному двигателю до начала эксплуатации и вычисленной, например, по номограммам или математической модели двигателя.

Изобретение позволяет существенно расширить функциональные возможности диагностики состояния турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм).

Изобретение может быть использовано в системах диагностики турбореактивного двухконтурного двигателя со смешением потоков в условиях эксплуатации.

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков (ТРДД), включающий измерение полетной информации, ее обработку и контроль тяги для диагностики ТРДД, отличающийся тем, что замеряют скорость полета летательного аппарата (V), характеризующую скорость набегающего на вход в двигатель потока воздуха, частоту вращения (n) вала низкого давления, статическое давление (Р) атмосферного воздуха, полную температуру (T ) воздуха на входе в двигатель, полное давление за компрессором низкого давления (Р ), полное давление за турбиной (Р ), положение створок реактивного сопла, характеризующее площадь критического сечения реактивного сопла (F), по замерам определяют величину R идеальной тяги двигателя как R=R-GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе в двигатель, и контролируют тягу двигателя по отклонению R от эталонного значения, соответствующего тяге данного ТРДД до начала эксплуатации, причем условную тягу R определяют в соответствии с алгоритмом следующим образом:- определяют параметр , пропорциональный полному давлению на входе в реактивное сопло как где - отношение значений площади на входе в камеру смешения из первого и второго контура соответственно,- определяют условное значение приведенной скорости λ в выходном сечении реактивного сопла, соответствующее полному расширению в нем выхлопной струи до атмосферного давления по функции, обратной газодинамической функции π(λ), по предварительно вычисленному параметру, характеризующему располагаемый перепад давлений в реактивном сопле - определяют условную площадь F выходного сечения сопла, соответствующую полному расширению выхлопной струи до атмосферного давления определяют условную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления с учетом входного импульса GV определяют величину идеальной тяги двигателя, соответствующей полному расширению выхлопной струи в реактивном сопле до атмосферного давления R=R-GV, где q(λ), r(λ) - газодинамические функции,F - площадь критического сечения реактивного сопла;λ - приведенная скорость газа в выходном сечении сопла, соответствующая полному расширению выхлопной струи до атмосферного давления.
СПОСОБ ДИАГНОСТИКИ ТУРБОРЕАКТИВНОГО ДВУХКОНТУРНОГО ДВИГАТЕЛЯ СО СМЕШЕНИЕМ ПОТОКОВ
СПОСОБ ДИАГНОСТИКИ ТУРБОРЕАКТИВНОГО ДВУХКОНТУРНОГО ДВИГАТЕЛЯ СО СМЕШЕНИЕМ ПОТОКОВ
СПОСОБ ДИАГНОСТИКИ ТУРБОРЕАКТИВНОГО ДВУХКОНТУРНОГО ДВИГАТЕЛЯ СО СМЕШЕНИЕМ ПОТОКОВ
СПОСОБ ДИАГНОСТИКИ ТУРБОРЕАКТИВНОГО ДВУХКОНТУРНОГО ДВИГАТЕЛЯ СО СМЕШЕНИЕМ ПОТОКОВ
СПОСОБ ДИАГНОСТИКИ ТУРБОРЕАКТИВНОГО ДВУХКОНТУРНОГО ДВИГАТЕЛЯ СО СМЕШЕНИЕМ ПОТОКОВ
Источник поступления информации: Роспатент

Showing 161-170 of 205 items.
18.05.2019
№219.017.562e

Кольцевая камера сгорания газотурбинного двигателя и способ ее работы

Камера сгорания содержит соосные наружный и внутренний корпуса, диффузор на входе, жаровую трубу в полости между корпусами, основную и дополнительную топливные системы с раздельными пневматическими форсунками. Жаровая труба включает наружную и внутреннюю обечайки с поясами поперечных отверстий....
Тип: Изобретение
Номер охранного документа: 0002343356
Дата охранного документа: 10.01.2009
18.05.2019
№219.017.5693

Трехфазный трубчатый проточный электроподогреватель газа

Изобретение относится к электротермии и может быть использовано для высокотемпературного "чистого подогрева" воздуха или иной текучей среды, когда нагреваемая среда не загрязняется, например, продуктами сгорания топлива, как в огневых подогревателях, или продуктами распада электродов, как в...
Тип: Изобретение
Номер охранного документа: 0002314659
Дата охранного документа: 10.01.2008
06.06.2019
№219.017.741d

Парогенерирующая установка

Изобретение относится к газотурбинным установкам с использованием продуктов сгорания в качестве рабочего тела, а именно к парогенерирующим установкам, и может быть использовано в энергетике. Сущность изобретения состоит в том, что парогенерирующая установка содержит агрегат наддува,...
Тип: Изобретение
Номер охранного документа: 0002690604
Дата охранного документа: 04.06.2019
06.06.2019
№219.017.7482

Установка для испытания деталей турбомашины

Изобретение относится к испытательной технике, в частности к испытаниям осевых турбомашин для газотурбинных установок. Установка для испытания деталей турбомашины содержит модельный осевой компрессор со съемными деталями, в корпусе которого установлен выходной статор с направляющими лопатками,...
Тип: Изобретение
Номер охранного документа: 0002690603
Дата охранного документа: 04.06.2019
19.06.2019
№219.017.85f5

Устройство для испытания колец

Изобретение относится к испытательной технике и может быть использовано для экспериментального определения окружной прочности кольцевых элементов конструкций. Устройство для испытания колец содержит секторные элементы, расположенные внутри испытуемого кольца, причем оно выполнено из n секторных...
Тип: Изобретение
Номер охранного документа: 0002392599
Дата охранного документа: 20.06.2010
19.06.2019
№219.017.875c

Способ испытаний корпуса ротора лопаточных машин на непробиваемость и устройство для его осуществления

Изобретение относится к области машиностроения, а именно к испытаниям корпусов роторов лопаточных машин на непробиваемость и исследованиям ударных воздействий на них. Способ заключается в том, что перед проведением испытаний на одной из лопаток, установленных на роторе, который расположен...
Тип: Изобретение
Номер охранного документа: 0002371692
Дата охранного документа: 27.10.2009
19.06.2019
№219.017.8862

Интегральный ракетно-прямоточный двигатель (ирпдт)

Изобретение относится к машиностроению, а именно к интегральным ракетно-прямоточным двигателям. Интегральный ракетно-прямоточный двигатель содержит газогенератор с твердотопливным зарядом, камеру сгорания, снабженную, по меньшей мере, одним патрубком, несбрасываемую крышку, размещенную на...
Тип: Изобретение
Номер охранного документа: 0002325544
Дата охранного документа: 27.05.2008
19.06.2019
№219.017.896d

Пилон - автовоспламенитель топлива

Изобретение относится к прямоточным воздушно-реактивным двигателям. Пилон содержит переднее и заднее тела аэродинамического профиля. Тела пилона выполнены трубчатыми. Пилон содержит, по меньшей мере, две трубки, расположенные одна за другой с закругленной передней кромкой. Трубки одним концом...
Тип: Изобретение
Номер охранного документа: 0002428576
Дата охранного документа: 10.09.2011
19.06.2019
№219.017.8a28

Способ диагностики вида аэроупругих колебаний рабочих лопаток осевой турбомашины

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении. Способ диагностики заключается в том, регистрируют сигналы с тензодатчиков на рабочих лопатках и с датчика...
Тип: Изобретение
Номер охранного документа: 0002402751
Дата охранного документа: 27.10.2010
19.06.2019
№219.017.8ab1

Роторный узел для газотурбинного двигателя

Роторный узел для газотурбинного двигателя содержит пару металлических дисков с центральным отверстием под вал ротора и множеством прецизионно обработанных сквозных отверстий под штифт, равномерно распределенных по длине двух концентрических окружностей, и лопаточный узел, размещенный между...
Тип: Изобретение
Номер охранного документа: 0002439337
Дата охранного документа: 10.01.2012
Showing 81-85 of 85 items.
29.08.2018
№218.016.814f

Способ полетной диагностики узлов турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к способу полетной диагностики узлов турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков. Для диагностики узлов измеряют определенным образом рабочие параметры двигателя на стационарном полетном режиме работы двигателя, измеряют параметры окружающей...
Тип: Изобретение
Номер охранного документа: 0002665142
Дата охранного документа: 28.08.2018
23.12.2018
№218.016.aa4a

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из регулируемого вентилятора разделяют на поток первого контура и поток второго контура. Для формирования потока третьего контура канал третьего контура подключают через...
Тип: Изобретение
Номер охранного документа: 0002675637
Дата охранного документа: 21.12.2018
22.06.2019
№219.017.8eb2

Способ управления турбореактивным двухконтурным двигателем

Изобретение относится к авиадвигателестроению, касается регулирования в полете турбореактивного двухконтурного двигателя со смешением потоков. Способ характеризуется тем, что на стационарных и переходных режимах работы двигателя измеряют внешние рабочие параметры, по которым вычисляют...
Тип: Изобретение
Номер охранного документа: 0002692189
Дата охранного документа: 21.06.2019
27.01.2020
№220.017.fa3b

Способ управления противообледенительной системой турбореактивного двухконтурного двигателя

Изобретение относится к противообледенительным системам летательных аппаратов, в частности к способу управления противообледенительной системой турбореактивного двухконтурного двигателя (ТРДД). Способ управления противообледенительной системой ТРДД заключается в том, что в полете при помощи...
Тип: Изобретение
Номер охранного документа: 0002712103
Дата охранного документа: 24.01.2020
14.05.2023
№223.018.5537

Способ управления турбореактивным двигателем

Изобретение относится к способам управления в полете турбореактивным двигателем с форсажной камерой и регулируемым реактивным соплом. Способ управления турбореактивным двигателем с форсажной камерой и регулируемым реактивным соплом в составе силовой установки летательного аппарата заключается в...
Тип: Изобретение
Номер охранного документа: 0002736403
Дата охранного документа: 16.11.2020
+ добавить свой РИД