×
20.02.2013
216.012.2635

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГИБКИХ АДСОРБИРУЮЩИХ ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения гибких адсорбирующих изделий. Способ включает смешение порошка пористого адсорбирующего материала (адсорбента), в качестве которого используют цеолиты, силикагели либо их комбинации, с полимерным связующим и формование полученной композиции. В качестве связующего используют полимеры фторпроизводных этилена (фторопласты). Перед формованием в смесевую композицию добавляют растворитель, выбранный из ряда кетонов, который удаляют из формованного сырого изделия путем сушки. После сушки адсорбирующего изделия осуществляют активацию путем термической обработки в вакууме. Способ обеспечивает получение изделий с высокими значениями кинетических параметров процессов массопереноса сорбата и сорбционной емкости адсорбента на единицу массы в многочисленных циклах сорбция - десорбция. Адсорбирующие изделия имеют высокое значение модуля упругости при изгибе и могут эксплуатироваться при температуре до 395°С. 3 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к способам получения гибких адсорбирующих изделий.

Использование в адсорбционных процессах сорбирующих материалов требует предварительного формования кристаллов сорбента в агломераты различной формы - гранулы, блоки, листы и т.д.

Существующие методы получения сорбирующих материалов предполагают использование как неорганических, так и органических связующих и имеют своей целью решение конкретной практической задачи - получение сорбента с заданными характеристиками.

При этом получаемый сорбирующий материал должен удовлетворять следующим основным требованиям: высокая сорбционная емкость, развитая удельная поверхность и структура транспортных пор, высокая кинетика сорбции и десорбции, достаточная вибро- и ударопрочность, устойчивость к воздействию перепада температур и агрессивных сред.

Кроме того, для некоторых областей техники, например для холодильных установок, пищевой промышленности, медицины, электроники и др., в силу специфики использования необходимы гибкие адсорбирующие материалы. Такие изделия особенно необходимы, когда они являются неотъемлемой частью картриджей с осушителями, либо крепятся к элементам изделия, имеющим неплоскую поверхность (например, сорбирующий материал должен быть размещен внутри либо снаружи цилиндра).

Известен способ получения гибких адсорбирующих материалов, включающий смешение термопластичной полимерной матрицы и пористого адсорбирующего материала, нагревание полученной смеси выше температуры плавления полимерной матрицы и формовании полученной суспензии (патент РФ №2380153, МПК B01J 20/28, 2010 г.). Формование производится либо экструзией, либо вытягиванием, либо отливкой дутьем. В качестве пористого адсорбирующего материала используют активированный уголь, активированную глину, неорганические оксиды, алюмосиликаты (например, различные цеолиты), силикагели либо их комбинации. В качестве полимерной матрицы используют сложные эфиры простых полиэфиров, сополимер этилена и винилацетата, сополимер стирола и бутадиена или сополимер этилена и октена. При этом весовое соотношение адсорбирующий материал/полимерная матрица составляет (30-85)/(70-15). При реализации указанного способа используется предварительно активированный пористый адсорбирующий материал (например, цеолит, прокаленный при температуре выше 600°С до остаточного влагосодержания менее 2% весовых). Данное условие делает необходимым проведение всех технологических операций в атмосфере, осушенной до значения точки росы ниже минус 40°С. После проведения всех перечисленных выше технологических операций производится нарезка и изгибание полученного изделия в требуемую геометрическую форму. Полученное гибкое адсорбирующее изделие может иметь поперечное сечение в форме овала, квадрата, прямоугольника, колеса повозки, сот либо пленки, что определяется формой экструзионной головки.

Гибкое адсорбирующее изделие, полученное данным способом, имеет недостаточно высокую кинетику сорбции водяного пара и недостаточную сорбционную емкость на единицу массы. Кроме того, гибкое адсорбирующее изделие характеризуется невысоким модулем упругости при изгибе и недостаточной устойчивостью к термическому воздействию, что не позволяет осуществлять продолжительную эксплуатацию адсорбента при температуре выше 120°С.

При этом такой способ является технологически сложным. Это обусловлено необходимостью проведения всех технологических операций в условиях атмосферы с поддержанием постоянного состава газовой среды (концентрация паров воды должна соответствовать точке росы менее минус 40°С), что требует создания практически герметичной от окружающей среды технологической линии. Постоянное поддержание требуемого состава газовой среды предполагает использования достаточно сложного адсорбционного оборудования и больших затрат ресурсов (адсорберы водяного пара, линия для проведения стадии десорбции сорбентов и т.д., что хорошо известно специалистам, работающим в данной области техники). Отклонение от соблюдения данного технологического параметра в конечном счете негативно влияет на эксплуатационные характеристики получаемых гибких адсорбирующих изделий (снижение сорбционной емкости и кинетики процессов массопереноса сорбатов).

Задачей изобретения является улучшение эксплуатационных характеристик гибких адсорбирующих изделий.

Задача решается изобретением, по которому в способе получения гибких адсорбирующих изделий, включающем смешение порошка адсорбента, в качестве которого используют цеолиты, силикагели либо их комбинации, с полимерным связующим, формование полученной композиции в сырое изделие требуемой геометрической конфигурации, в качестве полимерного связующего используют полимеры фторпроизводных этилена (фторопласты), а перед формованием в смесевую композицию из адсорбента и полимерного связующего добавляют растворитель, выбранный из ряда кетонов, который удаляют из формованного сырого изделия сушкой на воздухе либо в потоке газа, например воздуха. После сушки адсорбирующего изделия осуществляют его активацию путем термической обработки в вакууме.

Смешение порошка адсорбента и полимерного связующего осуществляют при соотношении адсорбент/полимерное связующее, равном 70-85/30-15% весовых, при этом количество растворителя выбирают исходя из требования получения для дальнейшего формования однородной суспензии заданной плотности и вязкости. Обычно количество растворителя составляет 10-20 мл на 1 грамм связующего.

В качестве растворителя могут быть использованы диметилкетон (2-пропанон, ацетон) и метилэтилкетон (2-бутанон), предпочтительно использовать ацетон.

Предпочтительно для приготовления суспензии используют исходный порошкообразный адсорбент с дисперсностью от 1 мкм до 5 мкм.

Предпочтительно сушку формованного изделия осуществляют при температуре выше 25°С, но ниже 45°С.

Предпочтительно активацию адсорбирующего изделия проводят в вакууме при остаточном давлении 5 мм рт.ст. и температуре 70-120°С до полного удаления растворителя.

Гибкое адсорбирующее изделие, полученное по изобретению, обладает перед прототипом рядом эксплуатационных преимуществ:

более высокая кинетика сорбции водяного пара;

более высокая сорбционная емкость водяного пара на единицу массы;

больший модуль упругости при изгибе;

более высокая устойчивость к термическому воздействию, что позволяет увеличить температуру продолжительной эксплуатации до 350°С.

Использование порошка исходного адсорбента с дисперсностью от 1 мкм до 5 мкм обеспечивает получение гибких адсорбирующий изделий с высокими значениями сорбционной емкости за счет доступности всего объема адсорбента для диффундирующего газа, т.к. при использовании в качестве связующего фторопласта не происходит блокировки транспортных и внутренних пор адсорбента (молекулы связующего на порядок превосходят размер транспортных пор). Этому же способствует то обстоятельство, что при удалении растворителя предлагаемым в способе технологическим приемом связующее после удаления растворителя представляет собой прочную газопроницаемую оболочку с множеством сквозных пор, размерами существенно превышающих размеры адсорбируемых молекул, что создает высокую проницаемость газовому потоку, обеспечивая тем самым высокую кинетику процессов массопереноса в циклах сорбции - десорбции.

Полученные по предложенному способу гибкие адсорбирующие изделия обладают при нормальных условиях модулем упругости от 30 до 75 МПа. Данное значение модуля упругости достигается за счет дисперсных параметров исходного порошка адсорбента, соотношения исходных компонентов, типа связующего, используемых технологических приемов и соблюдения их последовательности. Особенное значение имеет температура сушки формованного изделия, которая определяет скорость удаления растворителя, который при этом выступает в качестве порообразователя. При температурах выше 45°С удаление растворителя происходит столь интенсивно, что в фторопластовой матрице образуется множество сквозных пор большого диаметра. Это, в свою очередь, негативно влияет на физико-механические свойства получаемого гибкого сорбирующего материала: снижается модуль упругости, эластичность и т.д.

Кроме того, полученные по предложенному способу гибкие адсорбирующие изделия имеют температуру термической деструкции в температурном интервале от 350 до 370°С, что позволяет не только увеличить температуру продолжительной эксплуатации сорбента до 350°С, но и использовать полученные адсорбирующие изделия многократно, т.е. проводить их практически полную регенерацию, чего нельзя добиться для адсорбирующих изделий, полученных по патенту РФ №2380153 (достаточно полная десорбция воды из большинства сорбентов на основе цеолитов происходит при термической регенерации при температуре не менее 300-330°С в вакууме при остаточном давлении 0,1 мм рт.ст. либо при простой термической регенерации при 400-450°С [Н.В.Кельцев. Основы адсорбционной техники. М.: Химия. 1976. 511 с.]).

Кроме того, в отличие от способа по патенту РФ №2380153, способ по изобретению осуществляется в атмосфере, не требующей предварительной осушки, т.к. активация полученного адсорбирующего изделия происходит после смешения исходных компонентов и формования изделия в требуемую геометрическую конфигурацию. Из технологической схемы исключается операция создания атмосферы с фиксированным содержанием водяного пара, что существенно снижает энергозатраты при получении единицы конечного продукта.

Способ осуществляется следующим образом. Порошкообразный пористый адсорбирующий материал (адсорбент), в качестве которого используют цеолиты, силикагели либо их комбинации, смешивают в сухом виде в обычном смесителе в необходимом соотношении с полимерным связующим, в качестве которой используют полимеры фторпроизводных этилена, например фторопласт-42 марки «Ф-42 В» ГОСТ 25428-82. К полученной смеси в требуемом количестве добавляют растворитель, выбранный из ряда кетонов, например ацетон. После полного растворения полимерного связующего полученную суспензию вновь перемешивают любым известным способом до получения однородной массы.

Суспензию порошка адсорбента и полимерного связующего в растворителе формуют в сырое изделие любым известным способом, обеспечивающим необходимую для решения конкретной технической задачи геометрическую форму адсорбента (труба, цилиндр, кольцо, лист и т.д. Указанные формы могут иметь сотовую структуру.), например, с помощью экструдера либо литья. Полученное сырое изделие формованного адсорбента подвергают обработке, направленной на полное удаление растворителя. Это может быть либо сушка на воздухе, либо сушка в потоке газа, например воздуха при температуре выше 25°С, но ниже 45°С. После этого проводят активацию адсорбирующего изделия, например, в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре 70-120°С до полного удаления растворителя.

После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 1.

Готовят исходную композицию, для чего 3,5 кг порошкообразного кристаллического цеолита (например, кристаллита NaX) с дисперсностью от 1 мкм до 6 мкм смешивают с 1,5 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 30 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, отливкой дутьем в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат в потоке воздуха, нагретого до температуры 25°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 2

Готовят исходную композицию, для чего 7,5 кг порошкообразного кристаллического сорбента (например, цеолита NaA) с дисперсностью от 1 мкм до 6 мкм смешивают с 2,5 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 37,5 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, литьем в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат в потоке воздуха, нагретого до температуры 45°С, после чего подвергают термообработке в вакууме при температуре 70-110°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 3

Готовят исходную композицию, для чего 870 г порошкообразного кристаллического сорбента (например, кристаллита NaX) с дисперсностью от 1 мкм до 6 мкм смешивают с 130 г порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 1,3 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, экструзией в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат на воздухе при температуре 35°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 4

Готовят исходную композицию, для чего 870 г порошкообразного кристаллического сорбента (например, силикагеля КСКГ) с дисперсностью от 1 мкм до 6 мкм смешивают с 130 г порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 1,75 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например вытягиванием, в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат в потоке воздуха, нагретого до температуры 35°С, после чего подвергают термообработке в вакууме при температуре 70-110°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 5

Готовят исходную композицию, для чего 4,0 кг порошкообразного кристаллического сорбента (например, силикагеля КСМГ) с дисперсностью от 1 мкм до 6 мкм смешивают с 1,0 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 10 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, литьем в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат на воздухе при температуре 35°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 4 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 6

Готовят исходную композицию, для чего 4,0 кг порошкообразного кристаллического сорбента (например, кристаллита NaX и силикагеля КСМГ при весовом соотношении 1/1) с дисперсностью от 1 мкм до 6 мкм смешивают с 1,1 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 12 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, экструзией в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат на воздухе при температуре 45°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 7

Готовят исходную композицию, для чего 4,0 кг порошкообразного кристаллического сорбента (например, кристаллита NaX и силикагеля КСМГ при весовом соотношении 1/1) с дисперсностью от 1 мкм до 6 мкм смешивают с 1,1 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 12 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, экструзией в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат в потоке воздуха, нагретого до температуры 40°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Полученные по примерам 1-7 гибкие адсорбирующие изделия были исследованы в статических условиях стандартными методами с целью определения сорбционной емкости на единицу массы и кинетики процессов массопереноса при различных условиях на протяжении 10 циклов сорбция - десорбция. Методом дифференциального термического анализа были определены температуры термической деструкции полученных гибких адсорбирующих изделий (температура продолжительной эксплуатации этих изделий находится в области на 10-15°С ниже температуры термической деструкции). Значения модуля упругости при изгибе, характеризующего гибкие свойства полученных формованных изделий различной геометрической конфигурации, определялись согласно европейского стандарта EN 310 как отношение изгибающего момента М к моменту сопротивления W поперечного сечения образца, к которому приложена максимальная (разрушающая) нагрузка. Указанные выше характеристики в аналогичных условиях были определены и у специально синтезированного по примеру 2, описанному в патенте РФ №2380153, гибкого адсорбирующего изделия, содержащего в качестве полимерной матрицы эфир простых полиэфиров (торговая марка Hytrel, 30% весовых), а в качестве адсорбента - кристаллит NaX (70% весовых). Результаты представлены в таблице.

Таблица
Характеристики получаемых гибких адсорбирующих изделий
Способ получения Температура продолжительной эксплуатации сорбента, °С Статическая емкость по парам воды при φ=50%, мг/г Скорость поглощения паров воды при φ=50%, мг/г·час Модуль упругости при изгибе при 23°С, МПа
После получения После 10 циклов сорбция - десорбция После получения После 10 циклов сорбция - десорбция
По примеру 1 355 200,0 200,0 182,1 182,1 75
По примеру 2 350 182,1 182,0 166,4 166,3 72
По примеру 3 356 244,4 244,4 234,2 234,1 73
По примеру 4 352 261,6 261,5 247,9 247,8 73
По примеру 5 356 247,2 247,1 233,1 232,9 72
По примеру 6 356 253,3 253,4 242,2 242,3 71
По примеру 7 351 258,3 258,4 246,3 246,2 70
По патенту РФ №2380153 120 170,4 131,5 148,8 105,4 65

Как видно из приведенных в таблице данных, способ получения гибких адсорбирующих изделий по изобретению позволяет увеличить кинетические параметры процессов массопереноса сорбата и сорбционную емкость сорбента на единицу массы в многочисленных циклах сорбция - десорбция. Температура продолжительной эксплуатации полученных изделий увеличивается до 335-356°С, что не только расширяет область их применения, но и позволяет проводить их полную регенерацию (что принципиально невозможно для изделий, полученных по патенту РФ №2380153), т.е. многократно увеличивается срок их эксплуатации.

Предложенный способ обеспечивает получение гибких адсорбирующих изделий, обладающих более высоким значением модуля упругости при изгибе, т.е. более устойчивых к воздействию механических нагрузок.

Источник поступления информации: Роспатент

Showing 431-440 of 442 items.
21.05.2020
№220.018.1f28

Автоматизированный контроль температур при сварке

Изобретение относится к сварочному производству и может быть использовано в устройствах контроля основных параметров сварки в качестве средства автоматизированного контроля температур. Техническим результатом является расширение информативных возможностей системы автоматизированного контроля...
Тип: Изобретение
Номер охранного документа: 0002721478
Дата охранного документа: 19.05.2020
12.06.2020
№220.018.25e7

Устройство для смесеобразования в двигателях внутреннего сгорания

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания. Изобретение направлено на обеспечение повышения коэффициента полезного действия, экономичности и снижения токсичности двигателя внутреннего сгорания за счет организации управляемости процессов...
Тип: Изобретение
Номер охранного документа: 0002723260
Дата охранного документа: 09.06.2020
18.07.2020
№220.018.33ad

Стекло, упрочняемое ионным обменом

Изобретение относится к составам стекол, упрочняемых ионным обменом, предназначенных для изготовления изделий, обладающих высокими прочностными и оптическими характеристиками. Такие изделия применяются в качестве остекления авиационного, автомобильного, железнодорожного, водного и других видов...
Тип: Изобретение
Номер охранного документа: 0002726812
Дата охранного документа: 15.07.2020
26.07.2020
№220.018.3877

Судовой винтовой движитель

Изобретение относится к области судостроения и касается вопроса создания судовых гребных движителей с низким уровнем гидродинамического шума. Судовой винтовой движитель содержит ступицу и лопасти с входными и выходными участками. Поверхности выходных участков лопастей имеют волнообразную форму....
Тип: Изобретение
Номер охранного документа: 0002727788
Дата охранного документа: 23.07.2020
05.08.2020
№220.018.3ca8

Способ изготовления корундовой керамики

Изобретение относится к получению материалов для электронной техники, таких как детали СВЧ-техники, в частности сложнопрофильные керамические каркасы для микрочипов. Способ изготовления корундовой керамики включает мокрый помол глинозема, введение минерализующих добавок, получение спека, его...
Тип: Изобретение
Номер охранного документа: 0002728911
Дата охранного документа: 03.08.2020
11.05.2023
№223.018.53c5

Универсальная система обмена данными

Изобретение относится к области цифровой передачи информации. Техническим результатом является повышение отказоустойчивости системы обмена данными. Система обмена данными включает по меньшей мере четыре блока динамической маршрутизации, соединенные волоконно-оптическими линиями связи, в которой...
Тип: Изобретение
Номер охранного документа: 0002795451
Дата охранного документа: 03.05.2023
11.05.2023
№223.018.5423

Способ стендовой калибровки трехканального блока акселерометров

Изобретение относится к области гироскопической техники. Технический результат - повышение точности определения паспортных параметров блока акселерометров (БА). В способе стендовой калибровки трехканального блока акселерометров, блок акселерометров, предназначенный для использования в морских...
Тип: Изобретение
Номер охранного документа: 0002795393
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.5bc5

Звуко-виброизолирующий элемент для покрытий

Изобретение относится к области машиностроения и судостроения. Звуко-виброизолирующий элемент состоит из упругого элемента с полостью, в которую установлена катушка с армирующими элементами. Катушка состоит из набора армирующих элементов двух конструкций, соединенных между собой эластомерной...
Тип: Изобретение
Номер охранного документа: 0002752739
Дата охранного документа: 30.07.2021
15.05.2023
№223.018.5bc6

Звуко-виброизолирующий элемент для покрытий

Изобретение относится к области машиностроения и судостроения. Звуко-виброизолирующий элемент состоит из упругого элемента с полостью, в которую установлена катушка с армирующими элементами. Катушка состоит из набора армирующих элементов двух конструкций, соединенных между собой эластомерной...
Тип: Изобретение
Номер охранного документа: 0002752739
Дата охранного документа: 30.07.2021
23.05.2023
№223.018.6e24

Водометный движитель с крыльчатым обтекателем

Изобретение относится к области судостроения и касается вопросов создания водометных движителей всех типов судов и кораблей. Водометный движитель с крыльчатым обтекателем содержит водовод, выполненный в виде осесимметричной профилированной кольцевой насадки, внутри которой соосно размещено...
Тип: Изобретение
Номер охранного документа: 0002750561
Дата охранного документа: 29.06.2021
Showing 371-377 of 377 items.
05.07.2019
№219.017.a60f

Регенеративный патрон изолирующего дыхательного аппарата

Изобретение относится к изолирующим дыхательным аппаратам на химически связанном кислороде, предназначенным для защиты органов дыхания в аварийной ситуации. Регенеративный патрон изолирующего дыхательного аппарата на химически связанном кислороде содержит регенеративный продукт,...
Тип: Изобретение
Номер охранного документа: 0002693524
Дата охранного документа: 03.07.2019
13.07.2019
№219.017.b375

Способ получения формованного сорбента

Изобретение относится к получению формованного цеолитного адсорбента. Готовят исходную композицию, для чего порошкообразный кристаллический цеолит смешивают в сухом виде со связующим фторпластом. К смеси добавляют растворитель, выбранный из ряда кетонов, например ацетон. После полного...
Тип: Изобретение
Номер охранного документа: 0002694339
Дата охранного документа: 11.07.2019
24.10.2019
№219.017.da1f

Способ получения продукта для регенерации воздуха

Изобретение относится к способам получения продуктов для регенерации воздуха для систем защиты органов дыхания человека от поражающих факторов химической и биологической природы. Способ получения продукта для регенерации воздуха заключается во взаимодействии стабилизированного сульфатом магния...
Тип: Изобретение
Номер охранного документа: 0002703878
Дата охранного документа: 22.10.2019
01.02.2020
№220.017.fc20

Адсорбер

Изобретение относится к устройствам для разделения газов адсорбцией, в частности к адсорберам для осуществления циклического адсорбционно-десорбционного процесса разделения воздуха. Адсорбер для короткоцикловой безнагревной адсорбции, содержащий корпус, заполненный сорбентом, и установленную...
Тип: Изобретение
Номер охранного документа: 0002712702
Дата охранного документа: 30.01.2020
01.02.2020
№220.017.fc32

Способ изготовления блочного регенеративного продукта

Изобретение относится к технологии изготовления блочных регенеративных продуктов на основе окисных соединений щелочных металлов, наносимых на пористую подложку и предназначенных для снаряжения регенеративных патронов. Предложен способ изготовления блочного регенеративного продукта, включающий...
Тип: Изобретение
Номер охранного документа: 0002712695
Дата охранного документа: 30.01.2020
15.04.2020
№220.018.14cf

Быстрый и масштабируемый способ получения мезопористого терефталата хрома(iii)

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной емкостью, в частности к способу получения микропористого терефталата хрома(III), который может быть использован...
Тип: Изобретение
Номер охранного документа: 0002718677
Дата охранного документа: 13.04.2020
09.07.2020
№220.018.30be

Химический поглотитель диоксида углерода и способ его изготовления

Изобретение относится к составам поглотителей, применяемых в средствах защиты органов дыхания. Предложен химический поглотитель диоксида углерода, который содержит (масс. %): гидроксид лития не менее 84; карбонат лития не более 6; декстрин картофельный 4-6; пористая листовая подложка 6-4. Для...
Тип: Изобретение
Номер охранного документа: 0002725926
Дата охранного документа: 07.07.2020
+ добавить свой РИД