×
20.01.2013
216.012.1ccd

Результат интеллектуальной деятельности: ШИХТА ТВЕРДОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, в частности к спеченным безвольфрамовым твердым сплавам. Шихта твердого сплава на основе плакированных никелем частиц, ядро которых состоит из нитрида титана, содержит плакированные наноразмерные частицы с размером не более 100 нм, при соотношении ядра и оболочки, мас.%: нитрид титана 45,5-46,5; никель 52,5-53,5. Шихта обеспечивает получение твердого сплава на основе нитрида титана нано-ультрадисперсной структурной морфологии. 8 ил., 2 пр.
Основные результаты: Шихта для твердого сплава из плакированных никелем частиц, ядро которых состоит из нитрида титана, отличающаяся тем, что она содержит плакированные наноразмерные частицы с размером не более 100 нм, при этом соотношение ядра и оболочки составляет, мас.%:

Изобретение относится к порошковой металлургии, в частности к спеченным безвольфрамовым твердым сплавам - керметам.

Известно, что для повышения прочности твердого сплава необходимо получать твердые сплавы, имеющие мелкие по размеру зерна твердой фазы и обладающие при этом достаточно прочной связью между зернами по их границам. При этом существенным является состав исходной шихты, который бы позволил выбрать условия спекания, не приводящие к увеличению числа сросшихся зерен и образованию так называемого скелета, что обусловлено перекристаллизацией твердой фазы по механизму растворения осаждения (Кузнецов А.И., Кульков С.Н. Материалы докладов на конференции "Ультрадисперсные порошки, наноструктуры, материалы", Красноярск, 15-16 октября 2009 года, с.300-304).

Известна шихта твердого сплава на основе карбида вольфрама, содержащая ультрадисперсный порошок нитрида титана с размером частиц 0,01-0,1 мкм, и порошки никеля и кобальта (патент RU 2062812, МПК C22C 29/02, 1996 год). Введение ультрадисперсного порошка нитрида титана в состав шихты способствует снижению размера зерна карбидной фазы.

Однако состав известной шихты не позволяет получить твердый сплав, характеризующийся наноструктурой.

Наиболее близкой к предлагаемому техническому решению является шихта твердого сплава, представляющая собой смесь частиц нитрида титана TiN0,75 и никеля, электролитически осажденного на поверхность частиц нитрида титана (Кислый П.С., Боднарук Н.И., Боровикова М.С.и др. Керметы, Киев: Наук. думка, 1985 г., с.174-175). В процессе жидкофазного спекания в вакууме при температуре 1400°С в течение 3-х часов получен сплав TiN0,75 - 30% Ni.

Однако полученный твердый сплав из исходной шихты известного состава имеет микроструктуру с обычной для твердых сплавов морфологией, которая состоит из спеченного каркаса на основе твердой фазы - нитрида титана с прожилками относительно легкоплавкой фазы Ni(Ti)-Ni3Ti.

Таким образом, перед авторами стояла задача разработать состав шихты твердого сплава, обеспечивающий получение твердого сплава с наноультрадисперсной структурной морфологией.

Поставленная задача решена в предлагаемом составе шихты для твердого сплава на основе плакированных никелем частиц, ядро которых состоит из нитрида титана, которая содержит плакированные наноразмерные частицы с размером не более 100 нм, при этом соотношение ядра и оболочки составляет, мас. %: нитрид титана- 45,5-46,5; никель - 52,5-53,5.

В настоящее время из патентной и научно-технической литературы не известна шихта для твердого сплава, содержащая плакированные наноразмерные частицы нитрида титана с размером частиц не более 100 нм, при следующем соотношении ядра и оболочки, мас. %: нитрид титана - 45,5-46,5; никель - 52,5-53,5.

Авторами проведены экспериментальные исследования, в результате которых были определены интервалы значений параметров состава исходной шихты для получения твердого сплава наноультрадисперсной структурной морфологии. В случае соблюдения предлагаемых условий по составу шихты в части размера плакированных частиц нитрида титана и их состава по соотношению ядра к оболочке по данным микроскопического в обратно рассеянных электронах и спектрального анализов на микрошлифе полученного из исходной шихты сплава отсутствуют крупные скопления твердой фазы TiN (темная фаза), практически обе фазы: твердая TiN (темная фаза) и связующая Ni (светлая фаза), распределены дисперсноравномерно [фиг.1, 2 (режим обратно рассеянных электронов, увеличение 6000 и 3000 соответственно), фиг.3, 4 (данные спектрального анализа)]. В случае отклонения от предлагаемого диапазона размера частиц шихты в сторону увеличения, а также нарушения соотношения нитрида титана и никеля в составе частиц в сторону увеличения или уменьшения отсутствует возможность получения твердого сплава наноультрадисперсной структурной морфологии. В этом случае по данным микроскопического в обратно рассеянных электронах анализа на микрошлифе сплава хорошо видно, что твердая фаза TiN (темная фаза) не имеет сплошного каркаса и состоит из крупных скоплений, представляющих собой спеченные частицы микронного размера. В связующей фазе Ni (светлая фаза) хорошо видны ультрадисперсные включения серого цвета, представляющие собой соединения титана с никелем [см. фиг.5, 6 (режим обратно рассеянных электронов, увеличение 6000 и 3000 соответственно)]. Спектральный анализ поверхности шлифа сплава по Ti и Ni показал, что данные химические элементы распределены по всей поверхности неравномерно, имеются участки с повышенной их концентрацией по отношению друг другу (см. фиг.7, 8).

Шихту предлагаемого состава используют для получения твердого сплава путем жидкофазного спекания при температуре 1490-1510°С в течение 0,8-1,2 минут.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 20 г порошкообразной шихты, которая содержит плакированные частицы нитрида титана с размером частиц не более 100 нм, ядро которых состоит из нитрида титана, а оболочка - из никеля, при этом соотношение ядра и оболочки равно 46,5:53,5 (по данным спектрального и химического анализов). Шихту прессуют в виде таблетки диаметром 7 мм и спекают при 1490°С в течение 1, 2 мин. Получают сплав состава TiN-Ni наноультрадисперсной структурной морфологии (см. фиг.1, 2 и фиг.3, 4).

Пример 2. Берут 100 г порошкообразной шихты, которая содержит плакированные частицы нитрида титана с размером частиц не более 100 нм, ядро которых состоит из нитрида титана, а оболочка - из никеля, при этом соотношение ядра и оболочки равно 47,5:52,5 (по данным спектрального и химического анализов). Шихту прессуют в виде штабика размером 3×3×20 мм и спекают при 1510°С в течение 0,8 мин. Получают сплав состава TiN-Ni наноультрадисперсной структурной морфологии.

Таким образом, авторами предлагается шихта твердого сплава, использование которой обеспечивает получение твердого сплава на основе нитрида титана наноультрадисперсной структурной морфологии.

Шихта для твердого сплава из плакированных никелем частиц, ядро которых состоит из нитрида титана, отличающаяся тем, что она содержит плакированные наноразмерные частицы с размером не более 100 нм, при этом соотношение ядра и оболочки составляет, мас.%:
ШИХТА ТВЕРДОГО СПЛАВА
ШИХТА ТВЕРДОГО СПЛАВА
ШИХТА ТВЕРДОГО СПЛАВА
ШИХТА ТВЕРДОГО СПЛАВА
ШИХТА ТВЕРДОГО СПЛАВА
ШИХТА ТВЕРДОГО СПЛАВА
ШИХТА ТВЕРДОГО СПЛАВА
ШИХТА ТВЕРДОГО СПЛАВА
Источник поступления информации: Роспатент

Showing 1-8 of 8 items.
10.04.2013
№216.012.337e

Способ получения оксида скандия

Изобретение относится к цветной металлургии, а именно к извлечению оксида скандия из бедного скандиевого концентрата. Способ получения оксида скандия включает растворение скандийсодержащего концентрата в серной кислоте, удаление кислотонерастворимого осадка, перевод скандия в осадок в...
Тип: Изобретение
Номер охранного документа: 0002478725
Дата охранного документа: 10.04.2013
10.07.2013
№216.012.544d

Твердый экстрагент для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002487184
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5cb2

Способ получения наночастиц карбида молибдена

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения наночастиц карбида молибдена включает растворение пентахлорида молибдена в этаноле в соотношении, равном 1:(1-3). В полученный раствор добавляют мочевину. Затем проводят отжиг в две стадии. На первой...
Тип: Изобретение
Номер охранного документа: 0002489351
Дата охранного документа: 10.08.2013
27.09.2013
№216.012.6e7f

Композиционный нанопорошок и способ его получения

Изобретение относится к химической промышленности и может быть использовано для получения нанопорошков плазмохимическим методом. Композиционный нанопорошок включает частицы, состоящие из ядра, состоящего из слоев карбонитрида титана и нитрида титана, и оболочки, состоящей из слоя никеля, при...
Тип: Изобретение
Номер охранного документа: 0002493938
Дата охранного документа: 27.09.2013
10.01.2015
№216.013.186a

Способ получения нанодисперсных порошков

Изобретение относится к области металлургии, в частности к плазмохимическим способам получения нанодисперсных порошков методом переконденсации в низкотемпературной азотной плазме. Способ получения нанодисперсных порошков, плакированных никелем, в потоке низкотемпературной азотной плазмы...
Тип: Изобретение
Номер охранного документа: 0002537678
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
19.01.2018
№218.016.022b

Способ переработки золы-уноса тепловых электростанций

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий. В способе переработки золы-уноса угольных теплоэлектростанций, включающем высокотемпературную обработку в...
Тип: Изобретение
Номер охранного документа: 0002630021
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
Showing 1-10 of 13 items.
10.01.2013
№216.012.184c

Сложный ванадат марганца и никеля и способ его получения

Изобретение относится к лакокрасочной промышленности. Сложный ванадат марганца и никеля состава MnNiVO, где 0,20≤х≤0,27; может быть использован в качестве темного пигмента, отражающего излучение в ИК-диапазоне. Способ получения сложного ванадата марганца и никеля вышеуказанного состава включает...
Тип: Изобретение
Номер охранного документа: 0002471712
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.184d

Способ получения сложного ванадата цинка и кадмия

Изобретение относится к химическим соединениям, которые могут быть использованы в качестве диэлектрических составов для изготовления керамики, применяемой в конденсаторах, входящих в электрические схемы с целью подавления пульсаций, разделения постоянной и переменной составляющей электрического...
Тип: Изобретение
Номер охранного документа: 0002471713
Дата охранного документа: 10.01.2013
10.04.2013
№216.012.337e

Способ получения оксида скандия

Изобретение относится к цветной металлургии, а именно к извлечению оксида скандия из бедного скандиевого концентрата. Способ получения оксида скандия включает растворение скандийсодержащего концентрата в серной кислоте, удаление кислотонерастворимого осадка, перевод скандия в осадок в...
Тип: Изобретение
Номер охранного документа: 0002478725
Дата охранного документа: 10.04.2013
10.07.2013
№216.012.544d

Твердый экстрагент для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002487184
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5cb2

Способ получения наночастиц карбида молибдена

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения наночастиц карбида молибдена включает растворение пентахлорида молибдена в этаноле в соотношении, равном 1:(1-3). В полученный раствор добавляют мочевину. Затем проводят отжиг в две стадии. На первой...
Тип: Изобретение
Номер охранного документа: 0002489351
Дата охранного документа: 10.08.2013
27.09.2013
№216.012.6e7f

Композиционный нанопорошок и способ его получения

Изобретение относится к химической промышленности и может быть использовано для получения нанопорошков плазмохимическим методом. Композиционный нанопорошок включает частицы, состоящие из ядра, состоящего из слоев карбонитрида титана и нитрида титана, и оболочки, состоящей из слоя никеля, при...
Тип: Изобретение
Номер охранного документа: 0002493938
Дата охранного документа: 27.09.2013
10.01.2015
№216.013.186a

Способ получения нанодисперсных порошков

Изобретение относится к области металлургии, в частности к плазмохимическим способам получения нанодисперсных порошков методом переконденсации в низкотемпературной азотной плазме. Способ получения нанодисперсных порошков, плакированных никелем, в потоке низкотемпературной азотной плазмы...
Тип: Изобретение
Номер охранного документа: 0002537678
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
19.01.2018
№218.016.022b

Способ переработки золы-уноса тепловых электростанций

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий. В способе переработки золы-уноса угольных теплоэлектростанций, включающем высокотемпературную обработку в...
Тип: Изобретение
Номер охранного документа: 0002630021
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
+ добавить свой РИД