×
20.01.2013
216.012.1cb4

Результат интеллектуальной деятельности: ПРИМЕНЕНИЕ ОРГАНИЧЕСКОЙ СОЛИ ДЛЯ УВЕЛИЧЕНИЯ ГЛУБИНЫ ПЕРЕРАБОТКИ УГЛЕВОДОРОДСОДЕРЖАЩЕГО СЫРЬЯ И СПОСОБ УВЕЛИЧЕНИЯ ГЛУБИНЫ ПЕРЕРАБОТКИ УГЛЕВОДОРОДСОДЕРЖАЩЕГО СЫРЬЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтеперерабатывающей и нефтехимической отраслям промышленности и может быть использовано для увеличения глубины переработки углеводородсодержащего сырья. В качестве добавки для увеличения глубины переработки углеводородсодержащего сырья в термокаталитических процессах применяют органическую соль, имеющую формулу M(OOC-R), или M(SOC-R), или M(SSC-R), где R обозначает алкил, арил, изоалкил, трет-алкил, алкиларил, возможно включающий гидроксильную, кето-, амино-, карбоксильную, тиокарбаминовую группы, n - 1-3, а М обозначает переходной металл из элементов Периодической системы элементов. Также изобретение относится к способу увеличения глубины переработки углеводородсодержащего сырья, использующему указанную добавку. Использование настоящего изобретения позволяет увеличить глубину переработки углеводородсодержащего сырья в термокаталитических процессах. 2 н. и 12 з.п. ф-лы, 8 пр., 12 табл.

Изобретение относится к нефтеперерабатывающей и нефтехимической отраслям промышленности и может быть использовано для увеличения глубины переработки углеводородсодержащего сырья.

Известны различные способы углубления переработки нефти. В качестве примера можно привести различные методы крекинга, гидрокрекинга, висбрекинга и т.п. (Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. 672 с.).

Однако эти способы не позволяют достичь достаточного уровня переработки нефти (в России не более 65-70%), особенно тяжелых, сернистых и высокосернистых нефтей.

Известен способ переработки углеводородного сырья (WO 2011078994, МПК C10G 7/00, 30.06.2011). В известном способе наночастицы металлов или их оксидов, или их комбинации добавляют в сырую нефть перед началом перегонки с целью увеличения выхода светлых углеводородов в количестве 0,0004 и 0,02% мас. (предпочтительно 0,001 до 0,01% мас.), при этом наночастицы имеют размер менее 90 нм. Кроме того, наночастицы металлов или их оксидов могут смешивать с наночастицами цеолитов или галогенидов. Указанные наночастицы также добавляют в тяжелый остаток после перегонки для увеличения выхода дизельного топлива.

Однако известный способ не обеспечивает необходимой глубины переработки углеводородного сырья.

Известны также способы углубления переработки нефти за счет каталитических процессов с использованием гетерогенного или гомогенного катализа. Так, например, известен способ каталитического висбрекинга (патент RU 2213763, опубл. 20.04.2003). Сущность изобретения заключается в том, что переработку нефтяного сырья ведут в присутствии активного молибденсодержащего комплекса, образующегося в процессе первичной перегонки нефти. Молибден (в количестве 0,001-1,0 мас.%) вносится в исходное сырье в виде раствора водо- или маслорастворимых солей при температуре 20-80°C и нормальном давлении в исходную нефть. Далее производится атмосферная перегонка нефти на установке AT. Остаток перегонки (мазут) подвергают висбрекингу.

Однако этот метод не позволяет достичь большой глубины переработки с получением максимального количества светлых нефтепродуктов, поскольку продукт висбрекинга может использоваться либо как котельное топливо, либо как сырье для получения битума.

Для повышения дисперсности соли металла в сырьевой смеси и создания контактирования, близкого к межмолекулярному, что в свою очередь связано с повышением эффективности процесса, диспергирование необходимо проводить до образования стабильной эмульсии с диаметром капель 0,5-5,0 мкм, что осуществить в условиях промышленного производства затруднительно.

К недостаткам данного способа также относится отсутствие возможности регенерации молибдена.

Задачей настоящего изобретения является увеличение глубины переработки углеводородсодержащего сырья в термокаталитических процессах.

Решение поставленной задачи достигается тем, что для увеличения глубины переработки углеводородсодержащего сырья в термокаталитических процессах применяют органическую соль, имеющую формулу M(OOC-R)n, или M(SOC-R)n, или M(SSC-R)n, где R обозначает алкил, арил, изоалкил, трет-алкил, алкиларил, возможно включающий гидроксильную, кето-, амино-, карбоксильную, тиокарбаминовую группы, n - 1-3, а М обозначает переходной металл из элементов Периодической системы элементов, предпочтительно из элементов VIII группы Периодической системы элементов: железо, никель, кобальт, палладий, платина, переходной металл из элементов VII группы: марганец, переходной металл из элементов VI группы: хром, молибден, вольфрам.

Способ увеличения глубины переработки углеводородсодержащего сырья осуществляют в присутствии добавки, в качестве которой используют органическую соль, имеющую формулу M(OOC-R)n, или M(SOC-R)n, или M(SSC-R)n, где R обозначает алкил, арил, изоалкил, трет-алкил, алкиларил, возможно включающий гидроксильную, кето-, амино-, карбоксильную, тиокарбаминовую группы, n - 1-3, а М обозначает переходной металл из элементов Периодической системы элементов, из расчета 0,001-0,1% мас. металла на массу исходного сырья, при этом его осуществляют при температуре выше температуры разложения органической соли.

Переходной металл предпочтительно выбирают из элементов VIII, VII, VI групп Периодической системы элементов.

Металл из элементов VIII группы Периодической системы элементов выбирают из группы: железо, никель, кобальт, палладий, платина, металл из элементов VII группы выбирают из марганца, металл из элементов VI группы выбирают из группы, включающей хром, молибден, вольфрам.

Указанная органическая соль в условиях термического воздействия превращается в ультрадисперсную суспензию металла, т.е. получают наночастицы металла, который, в свою очередь, катализирует всевозможные процессы конверсии углеводородов: гидрирования, дегидрирования, деструкции.

В качестве углеводородсодержащего сырья преимущественно используют тяжелое сырье с плотностью более 0,850 г/см3, например тяжелые нефти, вакуумные газойли, прямогонные мазуты, гудроны, полугудроны, крекинг-остатки, нефтяные шламы индивидуально или в смеси, а также их смеси с горючими ископаемыми (горючие сланцы, битуминозные пески).

Термокаталитические процессы в настоящем изобретении включают каталитический крекинг, висбрекинг, гидровисбрегинг, каталитический риформинг, гидроочистку, гидрокрекинг, атмосферную и вакуумную перегонку, алкилирование, деалкилирование гидроалкилирование, изомеризацию, замедленное коксование.

Изобретение поясняется следующими примерами

Пример 1

Образец мазута западно-сибирской нефти с плотностью 0,89 г/см3 без добавления или с добавлением 2-этилгексаноата марганца из расчета 0,1% мас. или 2-этилгексаноата молибдена из расчета 0,001% мас. на массу исходного сырья подвергается термографическому исследованию на термогравиметрическом анализаторе фирмы "Mettler Toledo". Данные исследований представлены в табл.1.

Таблица 1
Результаты термографического исследования мазута западно-сибирской нефти без добавления катализатора
Температура, °C 155 182 201 221 243 284 410 477
% потери массы 10 20 30 40 50 60 70 80

Таблица 2
Результаты термографического исследования мазута западно-сибирской нефти с добавлением 2-этилгексаноата марганца из расчета 0,1% мас. марганца на массу исходного сырья
Температура, °C 167 191 210 224 240 260 281 323 406 454
% потери массы 10 20 30 40 50 60 70 80 90 99,7

Таблица 3
Результаты термографического исследования мазута западно-сибирской нефти с добавлением 2-этилгексаноата молибдена из расчета 0,001% мас. молибдена на массу исходного сырья
Температура, °C 160 186 206 223 241 264 287 330 411 461
% потери массы 10 20 30 40 50 60 70 80 90 99,8

Пример 2 Образец мазута западно-сибирской нефти с плотностью 0,89 г/см3 с добавлением неодеканоата палладия из расчета 0,1% мас. палладия на массу исходного сырья подвергается термографическому исследованию. Данные исследований представлены в табл.4.

Таблица 4
Результаты термографического исследования мазута западно-сибирской нефти с добавлением неодеканоата палладия из расчета 0,1% мас. палладия на массу исходного сырья
Температура, °C 166 189 209 223 241 258 279 318 400 448
% потери массы 10 20 30 40 50 60 70 80 90 99,8

Пример 3

Образец мазута западно-сибирской нефти с плотностью 1,0 г/см3 с добавлением нафтената никеля из расчета 0,05% мас. никеля на массу исходного сырья подвергается термографическому исследованию. Данные исследований представлены в табл.5.

Таблица 5
Результаты термографического исследования мазута западно-сибирской нефти с добавлением нафтената никеля из расчета 0,05% мас. никеля на массу исходного сырья
Температура, °C 168 192 211 224 242 258 279 320 405 458
% потери массы 10 20 30 40 50 60 70 80 90 99,7

Пример 4

Образец мазута западно-сибирской нефти с плотностью 1,0 г/см3 с добавлением олеата хрома из расчета 0,1% мас. хрома на массу исходного сырья подвергается термографическому исследованию на термогравиметрическом анализаторе фирмы "Mettler Toledo". Данные исследований представлены в табл.6.

Таблица 6
Результаты термографического исследования мазута западно-сибирской нефти с добавлением олеата хрома из расчета 0,1% мас. хрома на массу исходного сырья
Температура, °C 168 190 212 224 242 262 280 323 403 453
% потери массы 10 20 30 40 50 60 70 80 90 99,8

Как показывают результаты термографических исследований, при добавлении указанной органической соли из расчета 0,001-0,1% мас. металла на массу исходного сырья при температуре выше 240°C начинается термокаталитическое действие, что объясняется разложением органической соли.

Пример 5. Образец мазута западно-сибирской нефти с плотностью 0,89 г/см3 с добавлением ацетилацетоноата палладия из расчета 0,1% мас. палладия на массу исходного сырья подвергается термографическому исследованию. Данные исследований представлены в табл.7.

Таблица 7
Результаты термографического исследования мазута западно-сибирской нефти с добавлением ацетилацетоноата палладия из расчета 0,1% мас. палладия на массу исходного сырья
Температура, °C 167 188 210 224 245 258 270 315 395 435
% потери массы 10 20 30 40 50 60 70 80 90 99,8

Пример 6. Образец мазута западно-сибирской нефти с плотностью 0,89 г/см3 с добавлением кобальтовой соли диэтилтиокарбаминовой кислоты из расчета 0,1% мас. кобальта на массу исходного сырья подвергается термографическому исследованию. Данные исследований представлены в табл.8.

Таблица 8
Результаты термографического исследования мазута западно-сибирской нефти с добавлением кобальтовой соли диэтилтиокарбаминовой кислоты из расчета 0,1% мас. кобальта на массу исходного сырья
Температура, °C 167 188 205 214 235 246 261 305 377 418
% потери массы 10 20 30 40 50 60 70 80 90 99,8

Введение указанных органических солей в сырье может углубить переработку нефти как на стадии атмосферной перегонки, так и в процессе вакуумной перегонки тяжелого углеводородсодержащего сырья, в процессах крекинга, висбрекинга, замедленного коксования или любого воздействия термического характера на продукты, содержащие углеводороды.

Пример 7. Образец мазута западно-сибирской нефти с плотностью 0,89 г/см3 с добавлением 2-этилгексаноата кобальта из расчета 0,1% мас. кобальта на массу исходного сырья подвергают перегонке по Энглеру. Результаты представлены в табл.9 и 10

Таблица 9
Температу-
ра, °C
295 319 328 332 336 341 344 347 349 350 352 358
Объем дистиллята, мл 5 10 15 20 25 30 35 40 45 50 55 60

Таблица 10
Материальный баланс перегонки мазута, полученного атмосферной перегонкой западно-сибирской нефти
Наименование продукта Загрузка, г % Получено Масса фракции, г % к сырью
Мазут + 0,1% мас. катализатора 88,2 100 1. Фракция (до 350°C) 43,8 49,66
2. Фракция (350-360°C) 14,8 16,78
3. Фракция (360°C и выше) 27,6 31,3
4. Потери (газ) 2,0 2,26
итого 88,2 100

Кубовый остаток (фракция выше 360°C) был изучен на содержание наночастиц методом АСМ микроскопии на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что размер наночастиц никеля составляет 50-80 нм.

Пример 8. Образец вакуумного газойля, полученного вакуумной перегонкой мазута западно-сибирской нефти, с добавлением 2-этилгексаноата кобальта из расчета 0,1% мас. кобальта на массу исходного сырья подвергают перегонке по Энглеру. Результаты представлены в табл.11 и 12.

Таблица 11
Температура, °C 323 336 345 350 356 361
Объем дистиллята, мл 10 15 20 25 30 35

Таблица 12
Материальный баланс перегонки вакуумного газойля, полученного вакуумной перегонкой западно-сибирской нефти
Наименование продукта Загрузка, г % Получено Масса фракции, г % к сырью
Вакуумный газойль + 0,1% мас. катализатора 88,8 100 1. Фракция (115-360°C) 54,0 60,81
2. Фракция (360°C и выше) 31,6 35,59
3. Потери (газ) 3,2 3,60
итого 88,8 100

Как показывают результаты, приведенные в табл.11 и 12, предлагаемый способ крекинга вакуумного газойля с применением предлагаемого катализатора позволяет получить дополнительно дизельные фракции из фракций, выкипающих выше 360°C.

Металл-катализатор из остатков может быть выделен термическим воздействием выше 450°C (см. табл.2-8).

Источник поступления информации: Роспатент

Showing 81-90 of 123 items.
10.12.2015
№216.013.96db

Способ измерения энергетических спектров квазичастиц в конденсированной среде

Изобретение относится к области техники зондовой спектроскопии, которая занимается разработкой устройств и методов для исследования спектров поверхности с нанометровым разрешением. Согласно способу измерения энергетических спектров квазичастиц в конденсированной среде, возбуждают квазичастицы с...
Тип: Изобретение
Номер охранного документа: 0002570239
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97bf

Способ очистки сточных вод от фтора

Изобретение относится к способам очистки фторсодержащих сточных вод и может быть использовано в предприятиях по производству экстракционной фосфорной кислоты и фторосиликата натрия на основе фторокремниевой кислоты. Способ очистки сточных вод от фтора осуществляется путем обработки их...
Тип: Изобретение
Номер охранного документа: 0002570467
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9b7e

Способ получения полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы

Изобретение относится к способу получения полимерных продуктов с незамещенными циклопропановыми группами общей формулы (1): где (a+b):(c+d)=60-95:5-40 мол.%. Способ заключается во взаимодействии 1,2-полибутадиена атактического строения с диазосоединением в среде метиленхлорида в присутствии...
Тип: Изобретение
Номер охранного документа: 0002571431
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ccc

Способ получения кормового дикальцийфосфата

Изобретение относится к способам получения минеральных добавок для корма животных, а именно к производству кормового дикальцийфосфата. Способ получения кормового дикальцийфосфата включает добавление к экстракционной фосфорной кислоте, содержащей 45-52% PO, 1,5-4% серной кислоты в пересчете на...
Тип: Изобретение
Номер охранного документа: 0002571765
Дата охранного документа: 20.12.2015
10.02.2016
№216.014.c20b

Адсорбент для газохроматографического разделения энантиомеров

Изобретение относится к аналитической химии, в частности к созданию адсорбентов для разделения энантиомеров методом газовой хроматографии. Адсорбент состоит из инертного носителя Chromaton NAW и оптически активного соединения, представляющего собой супрамолекулярную структуру меламина,...
Тип: Изобретение
Номер охранного документа: 0002574767
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c33c

Способ получения реагентов для обработки буровых растворов

Изобретение относится к нефтяной и газовой промышленности и может быть использовано в производстве буровых реагентов. Технический результат - улучшение разжижающих свойств реагента в минерализованных буровых растворах, повышение термостабильности реагента до 190°C. В способе получения реагентов...
Тип: Изобретение
Номер охранного документа: 0002574659
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c38f

Сорбент для газохроматографического разделения энантиомеров (варианты) и способ его использования

Изобретение относится к созданию неподвижных фаз для разделения энантиомеров методом газовой хроматографии и может быть использовано в химической и фармацевтической промышленности для анализа энантиомеров. Предложен сорбент для газохроматографического разделения энантиомеров, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002574766
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4ec

Способ получения сульфата аммония

Изобретение относится к области неорганической химии, в частности к производству сульфата аммония, который может быть использован в качестве азотного удобрения в сельском хозяйстве. Способ получения сульфата аммония путем нейтрализации подотвальной и карьерной вод отработанных месторождений...
Тип: Изобретение
Номер охранного документа: 0002574772
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c88f

Бактерицид от сульфатвосстанавливающих бактерий в минерализованных водных средах

Изобретение относится к области защиты металлов в нефтяной отрасли от микробиологической коррозии. Предложено применение в качестве бактерицида для подавления сульфатвосстанавливающих бактерий в минерализованных водных средах гидрохлорида N-аллил-N-(1-метил-2-бутенильного) производных...
Тип: Изобретение
Номер охранного документа: 0002578313
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.038b

Состав битумной композиции для асфальтобетонных покрытий

Изобретение относится к области получения битумных композиций, содержащих полимерные добавки и предназначенных для использования в дорожном строительстве. Состав битумной композиции для асфальтобетонных покрытий включает смесь битума и малеинизированного синдиотактического 1,2-полибутадиена,...
Тип: Изобретение
Номер охранного документа: 0002587450
Дата охранного документа: 20.06.2016
Showing 81-90 of 134 items.
20.12.2015
№216.013.9b7e

Способ получения полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы

Изобретение относится к способу получения полимерных продуктов с незамещенными циклопропановыми группами общей формулы (1): где (a+b):(c+d)=60-95:5-40 мол.%. Способ заключается во взаимодействии 1,2-полибутадиена атактического строения с диазосоединением в среде метиленхлорида в присутствии...
Тип: Изобретение
Номер охранного документа: 0002571431
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ccc

Способ получения кормового дикальцийфосфата

Изобретение относится к способам получения минеральных добавок для корма животных, а именно к производству кормового дикальцийфосфата. Способ получения кормового дикальцийфосфата включает добавление к экстракционной фосфорной кислоте, содержащей 45-52% PO, 1,5-4% серной кислоты в пересчете на...
Тип: Изобретение
Номер охранного документа: 0002571765
Дата охранного документа: 20.12.2015
10.02.2016
№216.014.c20b

Адсорбент для газохроматографического разделения энантиомеров

Изобретение относится к аналитической химии, в частности к созданию адсорбентов для разделения энантиомеров методом газовой хроматографии. Адсорбент состоит из инертного носителя Chromaton NAW и оптически активного соединения, представляющего собой супрамолекулярную структуру меламина,...
Тип: Изобретение
Номер охранного документа: 0002574767
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c33c

Способ получения реагентов для обработки буровых растворов

Изобретение относится к нефтяной и газовой промышленности и может быть использовано в производстве буровых реагентов. Технический результат - улучшение разжижающих свойств реагента в минерализованных буровых растворах, повышение термостабильности реагента до 190°C. В способе получения реагентов...
Тип: Изобретение
Номер охранного документа: 0002574659
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c38f

Сорбент для газохроматографического разделения энантиомеров (варианты) и способ его использования

Изобретение относится к созданию неподвижных фаз для разделения энантиомеров методом газовой хроматографии и может быть использовано в химической и фармацевтической промышленности для анализа энантиомеров. Предложен сорбент для газохроматографического разделения энантиомеров, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002574766
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4ec

Способ получения сульфата аммония

Изобретение относится к области неорганической химии, в частности к производству сульфата аммония, который может быть использован в качестве азотного удобрения в сельском хозяйстве. Способ получения сульфата аммония путем нейтрализации подотвальной и карьерной вод отработанных месторождений...
Тип: Изобретение
Номер охранного документа: 0002574772
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c88f

Бактерицид от сульфатвосстанавливающих бактерий в минерализованных водных средах

Изобретение относится к области защиты металлов в нефтяной отрасли от микробиологической коррозии. Предложено применение в качестве бактерицида для подавления сульфатвосстанавливающих бактерий в минерализованных водных средах гидрохлорида N-аллил-N-(1-метил-2-бутенильного) производных...
Тип: Изобретение
Номер охранного документа: 0002578313
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.038b

Состав битумной композиции для асфальтобетонных покрытий

Изобретение относится к области получения битумных композиций, содержащих полимерные добавки и предназначенных для использования в дорожном строительстве. Состав битумной композиции для асфальтобетонных покрытий включает смесь битума и малеинизированного синдиотактического 1,2-полибутадиена,...
Тип: Изобретение
Номер охранного документа: 0002587450
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba1

Способ получения норборнензамещенных циклопропановых производных фуллеренов и полимеров на их основе

Изобретение относится к области органического синтеза, а именно к способу получения норборнензамещенных циклопропановых производных фуллеренов и синтеза высокомолекулярных соединений на их основе. Предложен способ получения норборнензамещенных циклопропановых производных фуллеренов общей...
Тип: Изобретение
Номер охранного документа: 0002579148
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c92

Способ возбуждения и регистрации оптических фононов

Способ возбуждения и регистрации оптических фононов включает в себя нанесение на острие иглы кантилевера АСМ слой активного материала. В нём производят возбуждение активирующим импульсом фемтосекундного лазера оптических фононов. Фононы отражаются от границы раздела слоя активного...
Тип: Изобретение
Номер охранного документа: 0002579360
Дата охранного документа: 10.04.2016
+ добавить свой РИД