×
10.01.2013
216.012.19ea

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002472126
Дата охранного документа
10.01.2013
Аннотация: Устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности. Техническим результатом изобретения является повышение чувствительности устройства при измерении малых фазовых сдвигов, соответствующих малым значениям давления. Устройство для дистанционного измерения давления содержит сканирующее устройство и приемоответчик. Сканирующее устройство содержит задающий генератор, усилитель мощности, дуплексер, приемо-передающую антенну, удвоитель фазы, делитель фазы на два, первый и второй узкополосные фильтры, первый и второй фазовые детекторы, блок регистрации, гетеродин, смеситель, усилитель промежуточной частоты, первый, второй, третий, четвертый, пятый и шестой перемножители, полосовой фильтр, фазовращатель на 90°, масштабирующий перемножитель, вычитатель и сумматор. Приемоответчик содержит звукопровод, микрополосковую приемо-передающую антенну, электроды, шины, мембрану и отражающую решетку. 2 ил.
Основные результаты: Устройство для дистанционного измерения давления, содержащее сканирующее устройство и приемоответчик, при этом сканирующее устройство представляет собой приемопередатчик с направленной или ненаправленной антенной и состоит из последовательно включенных задающего генератора, усилителя мощности, дуплексера, вход-выход которого связан с приемопередающей антенной, смесителя, второй вход которого соединен с выходом гетеродина, усилителя промежуточной частоты, первого перемножителя, второй вход которого соединен со вторым выходом задающего генератора, полосового фильтра, первого фазового детектора и блока регистрации, последовательно подключенных ко второму выходу усилителя промежуточной частоты удвоителя фазы, делителя фазы на два, первого узкополосного фильтра, второго перемножителя, второй вход которого соединен со вторым выходом задающего генератора, и второго узкополосного фильтра, выход которого соединен с вторым входом первого фазового детектора и первым входом фазометра, второй вход которого соединен с выходом гетеродина, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей встречно-штыревой преобразователь, который выполнен в виде двух систем гребенчатых электродов, нанесенных на поверхность звукопровода, электроды гребенок соединены шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены тонкая мембрана и отражающая решетка, отличающееся тем, что оно снабжено фазовращателем на 90°, третьим, четвертым, пятым и шестым перемножителями, масштабирующим перемножителем, вычитателем и сумматором, причем в качестве фазометра использован второй фазовый детектор, к выходу которого последовательно подключены фазовращатель на 90°, третий перемножитель, второй вход которого соединен с выходом фазовращателя на 90°, четвертый перемножитель, второй вход которого соединен с выходом третьего перемножителя, и сумматор, выход которого соединен с вторым входом блока регистрации, к выходу второго фазового детектора последовательно подключены пятый перемножитель, второй вход которого соединен с выходом второго фазового детектора, шестой перемножитель, второй вход которого соединен с выходом пятого перемножителя, и вычитатель, второй вход которого через масштабирующий перемножитель соединен с выходом третьего и пятого перемножителей, а выход подключен к второму входу сумматора.

Предлагаемое устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности.

Известные датчики давления основаны на различных физических принципах (авт.свид. СССР №355519, 427257, 508700, 538254, 723413, 781638, 885843, 951089, 1000806, 1290113, 1291829, 1368677, 1493895, 1508114, 1645862, 1686322, 1814040, 1815598, 1817929, 1818560, 1831669; патенты РФ №2058020, 2244908, 2311623; патенты США №4317372, 4395915, 4387601, 4562742; патент Польши №119860; патент Японии №50-9190; Бусурин В.И. Оптические и волоконно-оптические датчики. Квантовая электроника, 1985, №5, с.901-944 и другие).

Из известных датчиков давления наиболее близким к предлагаемому является «Устройство для дистанционного измерения давления» (патент РФ №2311623, G01L 11/04, 2005), которое и выбрано в качестве прототипа.

Указанное устройство обеспечивает повышение чувствительности, динамического диапазона и дальности действия устройства для дистанционного измерения давления за счет построения приемника сканирующего устройства по супергетеродинной схеме. Устройство содержит сканирующее устройство и приемоответчик. При этом сканирующее устройство содержит задающий генератор, усилитель мощности, дуплексер, приемо-передающую антенну, удвоитель фазы, делитель фазы на два, первый и второй узкополосные фильтры, фазовый детектор, фазометр, блок регистрации, гетеродин, смеситель, усилитель промежуточной частоты, первый и второй перемножители, полосовой фильтр.

Приемоответчик содержит звукопровод, микрополосковую приемо-передающую антенну, две системы гребенчатых электродов, две шины, мембрану и отражательную решетку.

Недостатком ближайшего аналога является низкая чувствительность при измерении малых фазовых сдвигов, соответствующих малым значениям давления.

Технической задачей изобретения является повышение чувствительности устройства при измерении малых фазовых сдвигов, соответствующих малым значениям давления.

Поставленная задача решается тем, что устройство для дистанционного измерения давления, содержащее, в соответствии с ближайшим аналогом, сканирующее устройство и приемоответчик, при этом сканирующее устройство представляет собой приемопередатчик с направленной или ненаправленной антенной и состоит из последовательно включенных задающего генератора, усилителя мощности, дуплексера, вход-выход которого связан с приемо-передающей антенной, смесителя, второй вход которого соединен с выходом гетеродина, усилителя промежуточной частоты, первого перемножителя, второй вход которого соединен со вторым выходом задающего генератора, полосового фильтра, первого фазового детектора и блока регистрации, последовательно подключенных к второму выходу усилителя промежуточной частоты удвоителя фазы, делителя фазы на два, первого узкополосного фильтра, второго перемножителя, второй вход которого соединен со вторым выходом задающего генератора, и второго узкополосного фильтра, выход которого соединен с вторым входом первого фазового детектора и первым входом фазометра, второй вход которого соединен с выходом гетеродина, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей встречно-штыревой преобразователь, который выполнен в виде двух систем гребенчатых электродов, нанесенных на поверхность звукопровода, электроды гребенок соединены шинами, которые связаны с микрополосковой приемо-передающей антенной, при этом на звукопроводе размещены тонкая мембрана и отражающая решетка, отличается от ближайшего аналога тем, что оно снабжено фазовращателем на 90°, третьим, четвертым, пятым и шестым перемножителями, масштабирующим перемножителем, вычитателем и сумматором, причем в качестве фазометра использован второй фазовый детектор, к выходу которого последовательно подключены фазовращатель на 90°, третий перемножитель, второй вход которого соединен с выходом фазовращателя на 90°, четвертый перемножитель, второй вход которого соединен с выходом третьего перемножителя, и сумматор, выход которого соединен с вторым входом блока регистрации, к выходу второго фазового детектора последовательно подключены пятый перемножитель, второй вход которого соединен с выходом второго фазового детектора, шестой перемножитель, второй вход которого соединен с выходом пятого перемножителя, и вычитатель, второй вход которого через масштабирующий перемножитель соединен с выходом третьего и пятого перемножителей, а выход подключен к второму входу сумматора.

Устройство для дистанционного измерения давления содержит сканирующее устройство и приемоответчик. Структурная схема сканирующего устройства представлена на фиг.1. Структурная схема приемоответчика изображена на фиг.2.

Сканирующее устройство представляет собой приемопередатчик с направленной или ненаправленной антенной и состоит из последовательно включенных задающего генератора 1, усилителя 2 мощности, дуплексера 3, вход-выход которого связан с приемо-передающей антенной 4, смесителя 19, второй вход которого соединен с выходом гетеродина 18, усилителя 20 промежуточной частоты, первого перемножителя 21, второй вход которого соединен со вторым выходом задающего генератора 1, полосового фильтра 22, первого фазового детектора 8, второй вход которого соединен с выходом второго узкополосного фильтра 24, и блока 10 регистрации. К второму выходу усилителя 20 промежуточной частоты последовательно подключены удвоитель 5 фазы, делитель 6 фазы на два, первый узкополосный фильтр 7, второй перемножитель 23, второй вход которого соединен со вторым выходом задающего генератора 1, второй узкополосный фильтр 24, фазометр 9, в качестве которого использован второй фазовый детектор, фазовращатель 25 на 90°, третий перемножитель 26, второй вход которого соединен с выходом фазовращателя 25 на 90°, четвертый перемножитель 27, второй вход которого соединен с выходом третьего перемножителя 26, и сумматор 32, выход которого соединен с вторым входом блока 10 регситрации. К выходу второго фазового детектора 9 последовательно подключены пятый перемножитель 28, второй вход которого соединен с выходом второго фазового детектора 9, шестой перемножитель 29, второй вход которого соединен с выходом пятого перемножителя 28, и вычитатель 31, второй вход которого через масштабирующий перемножитель 30 соединен с выходами третьего 26 и пятого 28 перемножителей, а выход подключен к второму входу сумматора 32.

Приемоответчик выполнен на многоотводной линии задержки на поверхностных акустических волнах (ПАВ), которая представляет собой дискретно-аналоговую реализацию цифрового трансверсального фильтра. Роль отводов в таком фильтре играет встречно-штыревой преобразователь (ВШП), который состоит из двух гребенчатых систем электродов 13, нанесенных на поверхность звукопровода 11. Электроды каждой из гребенок соединены друг с другом шинами 14 и 15. Шины, в свою очередь, связаны с микрополосковой приемо-передающей антенной 12. На звукопроводе 11, кроме того, размещены тонкая мембрана 16 и отражающая решетка 17.

Отводы многоотводной линии задержки равномерно распределены по поверхности звукопровода с шагом

Δh=V·τэ,

где V - скорость поверхностных акустических волн, она примерно на пять порядков меньше скорости распространения электромагнитных колебаний;

τэ - длительность элементарных посылок.

Приемоответчик представляет собой пъезокристалл с нанесенным на его поверхность алюминиевым тонкопленочным преобразователем и набором отражателей. Преобразователь подключен к микрополосковой приемо-передающей антенне 12, которая также изготовлена на поверхности пъезокристалла.

Сущность технического решения заключается в «усилении» малого фазового сдвига Δφ, соответствующего малому значению давления Р, в четыре раза в соответствии с выражением

Cos4Δφ-6Соs2Δφ·Sin2Δφ+Sin4Δφ=Cos4Δφ

Устройство для дистанционного измерения давления работает следующим образом.

Задающий генератор 1 формирует высокочастотное колебание

uc(t)=Uc·Cos(wct+φс), 0≤t≤Тc,

где Uc, wc, φс; Тc - амплитуда, несущая частота, начальная фаза и длительность высокочастотного колебания;

которое после усиления в усилителе 2 мощности через дуплексер 3 поступает в приемо-передающую антенну 4 и излучается ею в эфир.

Это высокочастотное колебание улавливается микрополосковой приемо-передающей антенной 12 и возбуждает приемоответчик, а именно встречно-штыревой преобразователь (ВШП) на ПАВ.

В основе работы устройств на ПАВ лежат три физических процесса:

- преобразование входного электрического сигнала в акустическую волну;

- распространение акустической волны вдоль поверхности звукопровода;

- отражение акустической волны и обратное преобразование ее в электромагнитный сигнал с фазовой манипуляцией (ФМн).

Для прямого и обратного преобразования ПАВ используется встречно-штыревой преобразователь ПАВ, работа которого основана на том, что переменные в пространстве и времени электрические поля, создаваемые в пьезоэлектрическом кристалле системой электродов 13, вызывают из-за пъезоэффекта упругие деформации, которые распространяются в кристалле в виде ПАВ. Центральная частота и полоса пропускания ВШП определяются шагом Δh размещения электродов 13 и их количеством.

Изготовление ВШП осуществляется стандартными методами фотолитографии и травлением тонкой металлической пленки, осажденной на пьезоэлектрическом кристалле. Возможности современной фотолитографии позволяют создавать ВШП, работающие на частотах до 3 ГГц.

К тонкой мембране 16 прикладывается давление Р, вызывающее ее деформацию. Скорость ПАВ в области мембраны изменится, и фаза отраженной от решетки 17 волны изменится в соответствии с деформацией мембраны 16.

Акустическая волна модифицируется уникальным, зависящим от топологии приемоответчика образом. Затем отраженная акустическая волна претерпевает обратное преобразование в электромагнитный сигнал с фазовой манипуляцией, внутренняя структура которого определяется топологией встречно-штыревого преобразователя, имеет индивидуальный характер и содержит всю необходимую информацию о датчике давления.

Сформированный ФМн-сигнал поступает в микрополосковую приемо-передающую антенну 12 и излучается ею в пространство

u1(t)=U1·Cos[wct+φk(t)+φс+Δφ], 0≤t≤Тс,

где φк(t)={0, π} - манипулируемая составляющая фазы, отражающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), который определяется структурой ВШП;

Δφ - изменение фазы, вызванное деформацией мембраны 16 под действием давления Р.

Указанный ФМн-сигнал улавливается приемо-передающей антенной 4 сканирующего устройства и через дуплексер 3 поступает на первый вход смесителя 19, на второй вход которого подается напряжение гетеродина 18

uг(t)=Uг·Cos(wгt+φг).

На выходе смесителя 19 образуются напряжения комбинационных частот. Усилителем 20 выделяется напряжение промежуточной (разностной) частоты

uup(t)=Uпp·Cos[wupt+φк(t)+φup], 0≤t≤Тc,

где ;

K1 - коэффициент передачи смесителя;

wup=wc-wг - промежуточная (разностная) частота;

φupсг,

которое поступает на первый вход первого перемножителя 21, на второй вход которого подается высокочастотное колебание uc(t) со второго выхода задающего генератора 1.

На выходе перемножителя 21 образуется напряжение

u2(t)=U2·Cos[wгt+φk(t)+φг+Δφ], 0≤t≤Тс,

где ;

К2 - коэффициент передачи перемножителя;

которое представляет собой ФМн-сигнал на частоте wг гетеродина 18, выделяется полосовым фильтром 22 и поступает на первый (информационный) вход фазового детектора 8.

Напряжение uup(t) со второго выхода усилителя 20 промежуточной частоты одновременно поступает на вход удвоителя 5 фазы. На выходе последнего образуется гармоническое колебание

U3(t)=U3·Cos[2wupt+2φup+2Δφ], 0≤t≤Тс,

Так как 2φк(t)={0,2π}, то в данном колебании манипуляция фазы уже отсутствует. Это колебание делится по фазе на два в делителе 6 фазы на два и выделяется узкополосным фильтром 7

u4(t)=U4·Cos(wupt+φup+Δφ), 0≤t≤Тc.

Полученное гармоническое колебание поступает на первый вход второго перемножителя 23, на второй вход которого подается высокочастотное колебание uc(t) со второго выхода задающего генератора 1. На выходе перемножителя 23 образуется гармоническое колебание

u5(t)=U5·Cos(wгt+φг+Δφ), 0≤t≤Тс,

где ;

которое выделяется узкополосным фильтром 24 и поступает на второй (опорный) вход первого фазового детектора 8, на выходе которого образуется низкочастотное напряжение

uн1(t)=Uн1·Cosφк(t), 0≤t≤Тс,

где ;

К3 - коэффициент передачи фазового детектора;

которое содержит информацию о номере дистанционного датчика давления и фиксируется на первом входе блока 10 регистрации.

Одновременно гармоническое колебание u5(t) с выхода узкополосного фильтра 24 поступает на первый вход фазометра 9, на второй вход которого подается напряжение uг(t) гетеродина 18. В качестве фазометра 9 используется второй фазовый детектор, на выходе которого образуется напряжение

u6(Δφ)=U6·CosΔφ,

где ;

Это напряжение поступает на вход фазовращателя 21 на 90°, на выходе которого формируется напряжение

u7(Δφ)=U6·Cos(Δφ+90°)=-U6·SinΔφ.

Это напряжение подается на два входа перемножителя 26, на выходе которого образуется напряжение

u8(Δφ)=U8·Sin2Δφ.

Это напряжение поступает на два входа четвертого перемножителя 27, на выходе которого формируется напряжение

u9(Δφ)=U9·Sin4Δφ,

где .

Одновременно напряжение u6(Δφ) с выхода второго фазового детектора 9 поступает на два входа пятого перемножителя 28, на выходе которого формируется напряжение

u10(Δφ)=U10·Cos2Δφ,

где .

Это напряжение поступает на два входа шестого перемножителя 29, на выходе которого формируется напряжение

u11(Δφ)=U11·Cos4Δφ,

где

Напряжения u8(Δφ) и u10(Δφ) с выходов третьего 26 и пятого 28 перемножителей поступают на два входа масштабирующего перемножителя 30, масштабирующий коэффициент Км которого выбирается равным 6 (Км=6). На выходе масштабирующего перемножителя 30 формируется напряжение

u12(Δφ)=6u8(Δφ)·u10(Δφ)=6U12·Соs2ΔφSin2Δφ,

где .

Напряжения u11(Δφ) и u12(Δφ) с выходов шестого перемножителя 29 и масштабирующего перемножителя 30 поступают на два входа вычитателя 31, на выходе которого формируется напряжение

u13(Δφ)=U11·Cos4Δφ-6U12·Соs2Δφ·Sin2Δφ,

Напряжения u9(Δφ) и u13(Δφ) с выходов четвертого перемножителя 27 и вычитателя 31 поступают на два входа сумматора 32, на выходе которого образуется напряжение

u14(Δφ)=u9(Δφ)+u13(Δφ)=U11·Cos4Δφ-6U12·Соs2ΔφSin2Δφ+U9·Sin4Δφ.

Если U11=U12=U9=U, то получим

u11(Δφ)=U·(Cos4Δφ-6Соs2Δφ·SinΔφ+Sin4φ)=U·CosΔφ.

Измеренное значение разности фаз Δφ1=4Δφ с выхода сумматора 32 фиксируется на втором входе блока 10 регистрации.

Следовательно, блоком 10 регистрации фиксируется номер дистанционного датчика давления и измеряемое им давление Р.

Сканирующее устройство обеспечивает последовательный опрос всех дистанционных датчиков давления, регистрацию их номеров и измеряемых давлений.

Таким образом, предлагаемое устройство по сравнению с прототипом обеспечивает повышение чувствительности при измерении малых фазовых сдвигов, соответствующих малым значениям давления Р. Это достигается «усилением» малых фазовых сдвигов Δφ в 4 раза Δφ1=4Δφ.

Устройство для дистанционного измерения давления, содержащее сканирующее устройство и приемоответчик, при этом сканирующее устройство представляет собой приемопередатчик с направленной или ненаправленной антенной и состоит из последовательно включенных задающего генератора, усилителя мощности, дуплексера, вход-выход которого связан с приемопередающей антенной, смесителя, второй вход которого соединен с выходом гетеродина, усилителя промежуточной частоты, первого перемножителя, второй вход которого соединен со вторым выходом задающего генератора, полосового фильтра, первого фазового детектора и блока регистрации, последовательно подключенных ко второму выходу усилителя промежуточной частоты удвоителя фазы, делителя фазы на два, первого узкополосного фильтра, второго перемножителя, второй вход которого соединен со вторым выходом задающего генератора, и второго узкополосного фильтра, выход которого соединен с вторым входом первого фазового детектора и первым входом фазометра, второй вход которого соединен с выходом гетеродина, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей встречно-штыревой преобразователь, который выполнен в виде двух систем гребенчатых электродов, нанесенных на поверхность звукопровода, электроды гребенок соединены шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены тонкая мембрана и отражающая решетка, отличающееся тем, что оно снабжено фазовращателем на 90°, третьим, четвертым, пятым и шестым перемножителями, масштабирующим перемножителем, вычитателем и сумматором, причем в качестве фазометра использован второй фазовый детектор, к выходу которого последовательно подключены фазовращатель на 90°, третий перемножитель, второй вход которого соединен с выходом фазовращателя на 90°, четвертый перемножитель, второй вход которого соединен с выходом третьего перемножителя, и сумматор, выход которого соединен с вторым входом блока регистрации, к выходу второго фазового детектора последовательно подключены пятый перемножитель, второй вход которого соединен с выходом второго фазового детектора, шестой перемножитель, второй вход которого соединен с выходом пятого перемножителя, и вычитатель, второй вход которого через масштабирующий перемножитель соединен с выходом третьего и пятого перемножителей, а выход подключен к второму входу сумматора.
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ДАВЛЕНИЯ
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 31-40 of 231 items.
10.12.2013
№216.012.89f7

Устройство для определения фазового состояния газожидкостного потока

Использование: для определения фазового состояния газожидкостного потока в контрольной точке вертикального сечения трубопровода. Сущность: заключается в содержании устройством для определения фазового состояния газожидкостного потока измерительного устройства и терморезистивного датчика...
Тип: Изобретение
Номер охранного документа: 0002501001
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e0b

Индукционный датчик углового положения

Изобретение относится к измерительной технике и может быть использовано для измерения угловых положений преобразователем положения индукционного типа. Технический результат: расширение диапазона измерений, упрощение конструкции датчика, повышение точности измерений. Сущность: датчик содержит...
Тип: Изобретение
Номер охранного документа: 0002502046
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.91e1

Автоматический беспилотный диагностический комплекс

Предлагаемый комплекс относится к области диагностической техники и может быть использован для систематического дистанционного контроля источников радиоизлучений (ИРИ) и состояния магистральных газопроводов и нефтепроводов, а именно для раннего обнаружения нарушений герметичности, повреждений и...
Тип: Изобретение
Номер охранного документа: 0002503038
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9586

Когерентно-импульсный радиолокатор

Предлагаемое устройство относится к области радиолокации, в частности к системам, предназначенным для распознавания различия между неподвижными и подвижными объектами, а также для определения величины и знака доплеровской частоты. Достигаемый технический результат - повышение чувствительности и...
Тип: Изобретение
Номер охранного документа: 0002503972
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.958e

Система для определения колебаний водной поверхности

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6...
Тип: Изобретение
Номер охранного документа: 0002503980
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9924

Региональная информационная система связи

Изобретение относится к системам дуплексной радиосвязи и может быть использована для передачи сигналов управления и синхронизации с пункта контроля и управления большой группе территориально-распределенных объектов, а также для сбора информации с указанных объектов для централизованного...
Тип: Изобретение
Номер охранного документа: 0002504903
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e1e

Устройство считывания информации с подвижных объектов железнодорожных составов

Изобретение относится к области управления железнодорожным транспортом. Устройство считывания информации с подвижных объектов железнодорожных составов содержит считывающее устройство, кодовые датчики и размещенные на локомотиве приемоответчики, блок питания и управления, генератор и блок приема...
Тип: Изобретение
Номер охранного документа: 0002506186
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f83

Датчик контроля дискретных уровней жидкости с функцией измерения температуры и контроля массового расхода жидкой среды

Изобретение относится к приборостроению, а именно к дискретным измерителям уровня, и может быть использовано для контроля уровня и массового расхода компонентов топлива при заправке, расходовании и хранении в химической, космической и других областях промышленности. Датчик контроля дискретных...
Тип: Изобретение
Номер охранного документа: 0002506543
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f8d

Автоматический беспилотный диагностический комплекс

Изобретение относится к области диагностической техники и может быть использовано для систематического дистанционного контроля состояния магистральных газопроводов и хранилищ, а именно для раннего обнаружения нарушений герметичности, повреждений и утечки в газопроводе, и направлено на...
Тип: Изобретение
Номер охранного документа: 0002506553
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a31f

Индукционный датчик положения

Относится к измерительной технике и может быть использовано для измерения линейных перемещений с помощью преобразователя перемещения индукционного типа. Техническим результатом заявленного изобретения является существенное повышение надежности работы индукционного датчика положения. Технический...
Тип: Изобретение
Номер охранного документа: 0002507474
Дата охранного документа: 20.02.2014
Showing 31-40 of 244 items.
27.12.2013
№216.012.91e1

Автоматический беспилотный диагностический комплекс

Предлагаемый комплекс относится к области диагностической техники и может быть использован для систематического дистанционного контроля источников радиоизлучений (ИРИ) и состояния магистральных газопроводов и нефтепроводов, а именно для раннего обнаружения нарушений герметичности, повреждений и...
Тип: Изобретение
Номер охранного документа: 0002503038
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9586

Когерентно-импульсный радиолокатор

Предлагаемое устройство относится к области радиолокации, в частности к системам, предназначенным для распознавания различия между неподвижными и подвижными объектами, а также для определения величины и знака доплеровской частоты. Достигаемый технический результат - повышение чувствительности и...
Тип: Изобретение
Номер охранного документа: 0002503972
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.958e

Система для определения колебаний водной поверхности

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6...
Тип: Изобретение
Номер охранного документа: 0002503980
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9924

Региональная информационная система связи

Изобретение относится к системам дуплексной радиосвязи и может быть использована для передачи сигналов управления и синхронизации с пункта контроля и управления большой группе территориально-распределенных объектов, а также для сбора информации с указанных объектов для централизованного...
Тип: Изобретение
Номер охранного документа: 0002504903
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e1e

Устройство считывания информации с подвижных объектов железнодорожных составов

Изобретение относится к области управления железнодорожным транспортом. Устройство считывания информации с подвижных объектов железнодорожных составов содержит считывающее устройство, кодовые датчики и размещенные на локомотиве приемоответчики, блок питания и управления, генератор и блок приема...
Тип: Изобретение
Номер охранного документа: 0002506186
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f83

Датчик контроля дискретных уровней жидкости с функцией измерения температуры и контроля массового расхода жидкой среды

Изобретение относится к приборостроению, а именно к дискретным измерителям уровня, и может быть использовано для контроля уровня и массового расхода компонентов топлива при заправке, расходовании и хранении в химической, космической и других областях промышленности. Датчик контроля дискретных...
Тип: Изобретение
Номер охранного документа: 0002506543
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f8d

Автоматический беспилотный диагностический комплекс

Изобретение относится к области диагностической техники и может быть использовано для систематического дистанционного контроля состояния магистральных газопроводов и хранилищ, а именно для раннего обнаружения нарушений герметичности, повреждений и утечки в газопроводе, и направлено на...
Тип: Изобретение
Номер охранного документа: 0002506553
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a31f

Индукционный датчик положения

Относится к измерительной технике и может быть использовано для измерения линейных перемещений с помощью преобразователя перемещения индукционного типа. Техническим результатом заявленного изобретения является существенное повышение надежности работы индукционного датчика положения. Технический...
Тип: Изобретение
Номер охранного документа: 0002507474
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a33e

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Технической...
Тип: Изобретение
Номер охранного документа: 0002507505
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a370

Способ сличения шкал времени

Изобретение предназначено для сличения шкал времени, разнесенных на большие расстояния и размещенных на транспортных средствах и наземном пункте управления и контроля, а также может быть использовано для дистанционного контроля технического состояния транспортного средства и его местоположения...
Тип: Изобретение
Номер охранного документа: 0002507555
Дата охранного документа: 20.02.2014
+ добавить свой РИД