×
17.06.2023
223.018.819e

Результат интеллектуальной деятельности: Лазерный дальномер

Вид РИД

Изобретение

Аннотация: Лазерный дальномер, содержащий основной и пробный излучатели разной мощности со схемами питания, фотоприемник с объективом, пороговое устройство с задатчиком переменного порога, включенное на выходе фотоприемника и по выходу связанное со схемой управления и измерителем временных интервалов, пороговое устройство снабжено задатчиком постоянного порогового уровня U, задатчик переменного порога U(Z), где Z - текущее значение дальности, и схема питания основного излучателя связаны с выходом схемы управления, выходная энергия Е пробного излучения ограничена соотношением где D - диаметр объектива фотоприемника, ψ - угол расходимости излучения пробного излучателя, R - дальность до зеркального отражателя, E - минимальная принимаемая фотоприемником энергия излучения, Е - предельно допустимый уровень засветки фотоприемника, а переменный порог U(Z) в области действия помехи обратного рассеяния установлен выше огибающей помех обратного рассеяния для всех возможных коэффициентов рассеяния. Переменный порог может быть обратно пропорционален третьей степени текущей дальности Z. Технический результат состоит в обеспечении безопасного режима работы фотоприемника при сохранении требуемой вероятности достоверного измерения в широком диапазоне дальностей. 1 з.п. ф-лы, 3 ил.

Изобретение относится к лазерной локации, а именно, к импульсным лазерным дальномерам и локаторам.

Известны системы импульсной лазерной локации, содержащие импульсный лазер и фотоприемник, а также схему измерения задержки отраженного сигнала, предназначенные для измерения дальности до удаленных объектов [1].

Особенность таких систем широкий амплитудный диапазон сигналов, отраженных от объектов на малых и больших расстояниях. Это приводит к перегрузкам приемного тракта и снижает его помехоустойчивость в ближней зоне [2]. Защита от помех, создаваемых посторонними местными объектами и аэрозолями воздушной трассы осуществляется с помощью временной автоматической регулировки усиления (ВАРУ) и порога (ВАРП) [2], однако эти меры неэффективны при перегрузках первых каскадов приемно-усилительного тракта, вызывающих ухудшение разрешающей способности и точности временной привязки отраженного сигнала [3]. При этом существует риск поражения фотоприемника излучением, отраженным от зеркального объекта. Известно фотоприемное устройство лазерного дальномера [4], в котором указанный недостаток устранен за счет введения перед чувствительной площадкой фотоприемника управляемого электрооптического ослабителя, однако такое решение приводит к существенному усложнению устройства и ухудшению отношения сигнал/шум.

Наиболее близким по технической сущности к предлагаемому изобретению является лазерный дальномер с пробным излучателем [5]. Указанное устройство содержит два излучателя разной мощности со схемами управления, фотоприемник, пороговое устройство с задатчиком стандартного порога, включенное на выходе фотоприемника и по выходу связанное с измерителем временных интервалов и со схемой управления более мощным излучателем.

Данная схема выделяет слабые принятые сигналы, например, сигналы, отраженные атмосферными аэрозолями. Поэтому при наличии сигнала обратного рассеяния [2], превышающего стандартный сигнал обратного рассения, формируемый задатчиком, система блокируется и утрачивает способность получать информацию от удаленных объектов.

Задачей изобретения является обеспечение безопасного режима работы фотоприемника при сохранении требуемой вероятности достоверного измерения в широком диапазоне дальностей.

Эта задача решается за счет того, что в известном лазерном дальномере, содержащем основной и пробный излучатели разной мощности со схемами питания, фотоприемник с объективом, пороговое устройство с задатчиком переменного порога, включенное на выходе фотоприемника и по выходу связанное со схемой управления и измерителем временных интервалов, пороговое устройство снабжено задатчиком постоянного порогового уровня Uo, задатчик переменного порога U(Z), где Z - текущее значение дальности, и схема питания основного излучателя связаны с выходом схемы управления, выходная энергия Е0 пробного излучения ограничена соотношением где Dпр - диаметр объектива фотоприемника, ψ - угол расходимости излучения пробного излучателя, R - дальность до зеркального отражателя, Emin - минимальная принимаемая фотоприемником энергия излучения, Епду - предельно допустимый уровень засветки фотоприемника, а переменный порог U(Z) в области действия помехи обратного рассеяния установлен выше огибающей помех обратного рассеяния для всех возможных коэффициентов рассеяния.

Переменный порог может быть обратно пропорционален третьей степени текущей дальности Z.

На чертеже фиг. 1 представлена функциональная схема лазерного дальномера. Фиг 2 иллюстрирует ход лучей на трассе дальномера. На фиг. 3 приведена осциллограмма помехи обратного рассеяния.

В состав лазерного дальномера входят основной излучатель 1, пробный излучатель 2, фотоприемник с объективом 3, на выходе которого включено пороговое устройство 4 с задатчиком постоянного порога 5 и задатчиком временной автоматической регулировки порога (ВАРП) 6. Выход порогового устройства связан с измерителем временных интервалов (ИВИ) 7 и схемой управления 8, выход которой подключен ко входам задатчика ВАРП 6 и входом «пуск» основного излучателя. Вход «пуск» пробного излучателя 2 связан также со схемой управления 8.

Устройство работает следующим образом.

В исходном состоянии основной излучатель 1 и задатчик ВАРП 6 заблокированы. При подаче команды «пуск» срабатывает пробный излучатель 2, направляя на выбранный объект импульс зондирующего излучения. Момент излучения t0 фиксируется измерителем временных интервалов, фотоприемник 3 принимает отраженный объектом импульс. Определяемый задатчиком 5 постоянный порог срабатывания порогового устройства 4, соответствует минимальной пороговой энергии принятого сигнала Емин (мощности сигнала Рминмин/tи, где tи - длительность импульса). Эти параметры определяются шумами фотоприемника и вероятностями ложного срабатывания и правильного обнаружения [1, 2].

Если в створе зондирующего излучения присутствует зеркальный отражатель (световозвращатель, ретрорефлектор, триппель-призма) с эффективной отражающей поверхностью, достаточной для формирования на фотоприемнике энергии, превышающей уровень Емин, то пороговое устройство 4 срабатывает и формирует импульс, временное положение которого t1 регистрируется измерителем временных интервалов 7, вычисляющим интервал времени Т=t1-t0. Дальность R до зеркально отражающего объекта определяют по формуле R=сТ/2, где с - скорость света [1].

Если в створе зондирующего луча нет зеркального отражателя, то пороговое устройство не срабатывает, и схема управления 8 формирует сигналы на запуск задатчика ВАРП 6 и основного излучателя 1. Далее процедура измерения дальности осуществляется в том же порядке, что и при пробном зондировании.

Благодаря описанному порядку работы устройства обеспечивается безопасный уровень засветки фотоприемника отраженными импульсами излучения.

При современном уровне чувствительности фотоприемников Емин, близком к теоретически предельному, и массогабаритных ограничениях, предъявляемых к оптике дальномеров, для обеспечения максимальной измеряемой дальности 5-25 км энергия зондирующего излучения Е0 должна быть не менее 10-20 мДж [2]. Известные дальномеры имеют именно такую выходную энергию лазерного излучения [6]. При таких энергетических соотношениях зеркальный отражатель, перекрывающий пучок излучения (фиг. 2) приводит к облучению фотоприемника энергией, значительно превышающей предельно допустимый уровень Епду.

Для наглядности на схеме фиг. 2 ход отраженных лучей условно продолжен в направлении зондирующего излучения. Очевидно, что действующий максимальный диаметр зеркального отражателя Dотр вдвое меньше диаметра приемного объектива Dпр. Исходя из этого, нетрудно определить энергию засветки фотоприемника зеркально отраженным излучением основного лазера с учетом локационного уравнения [1, 2].

где ψ - угол расходимости пучка зондирующего излучения;

R - расстояние до отражателя.

Пример 1

Dпр=40 мм; ψ=10-3 рад; Е0=0,01 Дж; R=Rмин=100 м - минимальное расстояние до отражателя, при котором засветка фотоприемника максимальна. Do-rp=Dnp/2=20 мм. При этих данных в соответствии с (1)

Предельно допустимый уровень энергии Епду=10-10 Дж установлен для стандартного фотоприемного устройства ФУО-119 на базе кремниевого лавинного фотодиода [7].

Из неравенства (2) видно, что при наличии на трассе отражателя в условиях примера 1 и на более высоких дальностях R в пределах заданного диапазона измерений фотоприемник будет выведен из строя обратно отраженным излучением основного излучателя.

Формула (1) справедлива и для оценки уровня засветки зеркально отраженным излучением пробного излучателя.

Известен миниатюрный полупроводниковый лазерный излучатель с микроцилиндрической линзой, в данном техническом решении не требующий дополнительной фокусирующей оптики [8]. Параметры этого излучателя: выходная мощность излучения 60 Вт; расходимость пучка излучения 10×10°; длительность импульса 10-8 с; энергия импульса 60 Вт⋅10-8 с = 6⋅10-7 Дж; габариты лазера ∅5,8×4,6; габариты микроцилиндрической линзы ∅1×2.

Согласно (1), для пробного излучателя

Е*пр=7,88⋅10-13 Дж.

Таким образом, при работе пробного излучателя принимаемый сигнал превышает минимальную принимаемую энергию Емин=6⋅10-16 Дж [7] и не превосходит предельно допустимого уровня Епду=10-10 Дж, что соответствует условию отмеченному в формуле изобретения.

Существенное влияние на работу дальномера оказывает атмосфера. Затухание на трассе выше не учтено, поскольку рассматривался наихудший в смысле уровня вредных засветок случай. Однако в основном режиме работы обратно рассеянное атмосферой излучение лазерного передатчика дальномера может создавать помехи.

Сигнал обратного рассеяния имеет вид [9]:

где Z - расстояние до элементарного рассеивающего объема;

Z' - переменная интегрирования;

A(Z) - аппаратная функция, учитывающая энергетический потенциал и геометрический фактор прибора, обусловленный неполным перекрытием полей излучателя и приемника в ближней зоне;

βs(Z) и βt(Z') - усредненные профили объемных коэффициентов рассеяния и ослабления; для ориентировочной оценки можно считать βs(Z)=βt(Z')=3/V;

V - метеорологическая дальность видимости;

gπ(Z) - усредненный профиль лидарного отношения (нормированного коэффициента обратного рассеяния, определяемого индикатрисой рассеяния); можно принять gπ(Z)=1/8π [9].

Для среднего значения β(Z)=β из (3) следует:

где A*(Z) - нормированная функция A(Z); A*(Z) ~1 при Z ~ 100 м;

Еo - энергия зондирующего сигнала;

β - средний коэффициент рассеяния;

с - скорость света;

D - диаметр приемного объектива;

τo - коэффициент пропускания приемной оптики.

Производная (4) по β

Из равенства (5) нулю следует условие максимума P(Z) в каждом сечении трассы зондирования.

где П и П* - постоянные коэффициенты, определяемые энергетическим потенциалом аппаратуры.

Эффективная протяженность помехи обратного рассеяния не превышает 1 км. На фиг. 3 приведен пример такой помехи (цена горизонтального деления равна 1 мкс, что соответствует 150 м в масштабе Z. В ближней зоне помеха обратного рассеяния ограничена аппаратной функцией дальномера [2]. Поэтому реально зависимость (6) следует реализовывать с помощью переменной составляющей порога в области действия помехи обратного рассеяния в сравнительно узких пределах от 100 до 1000 м.

В соответствии с предлагаемым изобретением был разработан макетный образец лазерного дальномера.

Проведенные исследования подтвердили выполнение заданных технических требований во всех заданных условиях эксплуатации.

Таким образом, предлагаемое техническое решение обеспечивает безопасный режим работы фотоприемника при сохранении требуемой вероятности достоверного измерения в широком диапазоне дальностей.

Источники информации

1. В.А. Волохатюк и др. "Вопросы оптической локации". - М.: Советское радио, М., 1971. - с. 213.

2. В.Г. Вильнер и др. Достоверность измерений импульсного лазерного дальномера. М.: Фотоника. 2013, №3. - С. 42-60.

3. В.Г. Вильнер и др. Пути достижения предельной точности лазерного скоростемера. М: Мир измерений. 2010, №7. - С.17-21.

4. Radiation receiver with active optical protection system. US patent No 6,548,807.

5. Laser measurement system. US pat. No 4,657,382. - прототип.

6. Simrad LP7. Jane's Electro-Optic Systems 2003-2004, p. 355.

7. Фотоприемное устройство одноэлементное ФУО-119-01 ОС2.003.030ТУ.

8. В.Г. Вильнер и др. Новые методы повышения энергии зондирующего излучения импульсных дальномеров-высотомеров на основе полупроводниковых лазеров. Казань: КГЭУ, Известия ВУЗов. Проблемы энергетики. Электроэнергетика. №11-12, 2013. - С. 33-37.

9. Вопросы лазерного зондирования атмосферы. [Сборник статей / АН СССР, Сиб. отд-ние, Ин-т оптики атмосферы; Отв. ред. чл.-кор. АН СССР В.Е. Зуев. - Новосибирск: Наука. Сиб. отд-ние, 1976. - 189 с.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 71.
12.01.2017
№217.015.5ad6

Система регулировки периметра зеемановского лазерного гироскопа

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра зеемановского лазерного гироскопа. Система содержит фотоприемник излучения кольцевого лазера, вход которого является входом излучения кольцевого лазера, оснащенного пьезоприводом и...
Тип: Изобретение
Номер охранного документа: 0002589756
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.bf5e

Устройство для удаления растворенных газов из изоляционного компаунда

Изобретение относится к области герметизирующих составов для электронной техники. Устройство для удаления растворенных газов из изоляционного компаунда состоит из контейнера (3) и соединенных с ним вибраторов (1,2). Вибраторы выполнены с возможностью передачи вибрационных воздействий в...
Тип: Изобретение
Номер охранного документа: 0002617164
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c1e5

Способ упрочнения оптического контакта диэлектрических поверхностей лазерного гироскопа и генератор струи плазмы для его реализации

Изобретение относится к способу и устройству для низкотемпературного упрочнения оптического контакта диэлектрических поверхностей газоразрядных приборов, в частности резонаторов моноблочных газовых лазеров, в процессе их технологической сборки. Заявленное устройство содержит диэлектрический...
Тип: Изобретение
Номер охранного документа: 0002617697
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.cd67

Способ контроля состояния конструкции инженерно-строительного сооружения

Изобретение относится к измерительной технике и может быть использовано для автоматизированного контроля состояния конструкции здания или инженерно-строительного сооружения в процессе его эксплуатации. Согласно способу в местах диагностирования контролируемой конструкции размещают датчики,...
Тип: Изобретение
Номер охранного документа: 0002619822
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.da1b

Лазер с продольной накачкой

Изобретение относится к лазерной технике. Лазер с продольной накачкой содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен...
Тип: Изобретение
Номер охранного документа: 0002623688
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.da32

Лазер

Изобретение относится к лазерной технике. Лазер содержит активный элемент, выполненный в виде стержня, по крайней мере один из торцов которого скошен относительно его продольной оси так, что угол между нормалью к торцу и продольной осью активного элемента превышает предельный угол полного...
Тип: Изобретение
Номер охранного документа: 0002623810
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.ea9f

Способ определения толщины окисной плёнки алюминия в процессе анодного окисления холодного катода в тлеющем разряде кислорода

Использование: для определения толщины окисной пленки алюминия в процессе анодного окисления холодного катода в тлеющем разряде кислорода. Сущность изобретения заключается в том, что способ определения средней толщины окисной пленки в процессе анодного окисления холодного катода в тлеющем...
Тип: Изобретение
Номер охранного документа: 0002627945
Дата охранного документа: 14.08.2017
29.12.2017
№217.015.f680

Твердотельный лазер

Изобретение относится к лазерной технике. Твердотельный лазер содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен так, что...
Тип: Изобретение
Номер охранного документа: 0002635400
Дата охранного документа: 13.11.2017
19.01.2018
№218.016.00cd

Импульсный твердотельный лазер

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, выполненный в виде стержня, оба торца которого скошены так, что угол между нормалью к поверхности торца и продольной осью активного элемента превышает предельный угол полного внутреннего...
Тип: Изобретение
Номер охранного документа: 0002629685
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.19ab

Твердотельный лазер с модуляцией добротности

Изобретение относится к лазерной технике. Твердотельный лазер с модуляцией добротности содержит источник излучения накачки в виде лазерной диодной матрицы, активный элемент, первое и второе зеркала резонатора, а также электрооптический элемент и поляризатор, активный элемент выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002636260
Дата охранного документа: 21.11.2017
Показаны записи 1-10 из 97.
20.01.2013
№216.012.1d80

Лазерный измеритель дальности (варианты)

Лазерный измеритель дальности содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель. Передающий канал включает лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает...
Тип: Изобретение
Номер охранного документа: 0002473046
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.27c6

Лазерный дальномер (варианты)

Лазерный дальномер содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает фотоприемное устройство и приемный...
Тип: Изобретение
Номер охранного документа: 0002475702
Дата охранного документа: 20.02.2013
27.09.2013
№216.012.70d1

Генератор импульсов тока

Изобретение относится к технике формирования импульсов тока, в частности к устройствам питания импульсных газонаполненных ламп накачки твердотельных лазеров с разрядом через лампу накопительного конденсатора. Достигаемый технический результат - повышение надежности и сокращение массо-габаритных...
Тип: Изобретение
Номер охранного документа: 0002494532
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70d2

Способ оптической накачки лазера

Изобретение относится к технике формирования импульсов тока в устройствах оптической накачки лазеров, например в источниках светодиодной накачки или в источниках питания импульсных газонаполненных ламп накачки с разрядом через лампу накопительного конденсатора. Достигаемый технический результат...
Тип: Изобретение
Номер охранного документа: 0002494533
Дата охранного документа: 27.09.2013
10.02.2014
№216.012.9f87

Приемник импульсных оптических сигналов

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсных оптических сигналов, содержащий фотоприемник с...
Тип: Изобретение
Номер охранного документа: 0002506547
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b12a

Приемник импульсного оптического излучения

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсного оптического излучения, содержащий фотоприемник с...
Тип: Изобретение
Номер охранного документа: 0002511069
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c4e6

Лазерный дальномер

Изобретение относится к лазерной технике к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости...
Тип: Изобретение
Номер охранного документа: 0002516165
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.ce51

Лазерный дальномер

Изобретение относится к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости объектива излучателя. Объектив...
Тип: Изобретение
Номер охранного документа: 0002518588
Дата охранного документа: 10.06.2014
10.05.2015
№216.013.49b1

Твердотельный лазер

Изобретение относится к лазерной технике. Твердотельный лазер содержит активный элемент и лампу накачки, установленные в осветителе, включающем отражатель, а также резонатор, образованный глухим и полупрозрачным зеркалами. Осветитель выполнен монолитным из высокоотражающего материала и имеет...
Тип: Изобретение
Номер охранного документа: 0002550372
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4afa

Лазер с модуляцией добротности резонатора

Изобретение относится к лазерной технике. Лазер с модуляцией добротности резонатора содержит корпус с отражателем, внутри которого размещены лампа накачки и активный элемент. На его оптической оси с противоположных торцов активного элемента установлены неподвижно закрепленное полупрозрачное...
Тип: Изобретение
Номер охранного документа: 0002550701
Дата охранного документа: 10.05.2015
+ добавить свой РИД