×
17.06.2023
223.018.80eb

Результат интеллектуальной деятельности: ТЕРМОЯДЕРНАЯ МИШЕНЬ НЕПРЯМОГО ИНИЦИИРОВАНИЯ

Вид РИД

Изобретение

№ охранного документа
0002765486
Дата охранного документа
31.01.2022
Аннотация: Изобретение относится к термоядерной мишени непрямого инициирования. Мишень содержит капсулу с горючим и оболочку, удерживающую рентгеновское излучение, создаваемое при облучении ее внутренней поверхности внешним лазерным излучением. Капсула с горючим зафиксирована в начальном положении держателями внутри оболочки, а именно над центром оболочки. Причем держатели содержат электромагниты, электрически связанные с внешней системой синхронизации. Термоядерная мишень может содержать шторки с электромагнитами, электрически связанными с внешней системой синхронизации. Техническим результатом является увеличение термоядерного энерговыделения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к непрямому инициированию термоядерных микровзрывов лазерным излучением и мишеням для такого инициирования.

Известна термоядерная мишень непрямого инициирования (см. заявку RU2013125570, МПК G21B 1/00, опубликована 20.12.2014), содержащая оболочку (называемую в заявке RU2013125570 «резонатор», что является одним из переводов термина «hohlraum», обычно переводимого в литературе по термоядерным мишеням термином «оболочка»), капсулу с горючим (называемую в заявке RU2013125570 «капсула»), расположенную вблизи центра оболочки, и мембрану, поддерживающую капсулу с горючим в вышеупомянутом положении.

Недостатком является наличие границы контакта между капсулой с горючим и мембраной, что приводит к зарождению плазменных неустойчивостей в начале облучения мишени внешним лазерным излучением.

Известна термоядерная мишень непрямого инициирования (см. статью IE. Ralph et al., Physics of Plasmas, Vol. 27, N 10, 102708 (2020), опубликована 14.10.2020), совпадающая с настоящим решением по наибольшему числу существенных признаков и принятая за прототип. Мишень-прототип содержит капсулу с горючим и оболочку, удерживающую рентгеновское излучение, создаваемое при облучении ее внутренней поверхности внешним лазерным излучением, при этом капсула с горючим размещена внутри оболочки и жестко зафиксирована в начальном положении в центре оболочки с точностью 10 мкм двумя пластиковыми мембранами, которые в совокупности именуются «тент».

В момент начала сжатия капсулы с горючим рентгеновским излучением, создаваемым при облучении внутренней поверхности оболочки внешним лазерным излучением, на границе контакта капсулы с горючим и конструкционных элементов, жестко фиксирующими ее в начальном положении, происходит зарождение плазменных неустойчивостей. Развитие этих неустойчивостей в процессе дальнейшего сжатия капсулы с горючим приводит к низкой симметрии сжатия и, как следствие, к малости достигаемого термоядерного энерговыделения по сравнению с его расчетной величиной, соответствующей высокой симметрией сжатия, т.е. сжатию при высокой симметрии облучения капсулы с горючим и без развития неустойчивостей. Согласно представленным в статье D.S. Clark et al., J. Phys.: Conf. Ser. Vol. 717, 012011 (2016) результатам численного моделирования действия мишени, принятой за прототип, при высокой симметрии облучения капсулы с горючим, аблятор которой изготовлен из пластика, развитие вышеупомянутых неустойчивостей приводит к снижению термоядерного энерговыделения в 15 раз в случае низкоэнтропийного сжатия капсулы с горючим и в 5 раз - в случае ее высокоэнтропийного сжатия.

Задачей настоящего технического решения является разработка такой конструкции термоядерной мишени непрямого инициирования, которая бы обеспечивала увеличение термоядерного энерговыделения до величины, определяемой асимметрией облучения капсулы с горючим в случае невозможности устранения такой асимметрии или до величины, близкой к соответствующей высокой симметрии сжатия горючего, в случае возможности устранения асимметрии облучения капсулы с горючим.

Поставленная задача достигается тем, что термоядерная мишень непрямого инициирования содержит капсулу с горючим и оболочку, удерживающую рентгеновское излучение, создаваемое при облучении ее внутренней поверхности внешним лазерным излучением, при этом при этом капсула с горючим зафиксирована в начальном положении держателями внутри оболочки. Новым является тот факт, что капсула с горючим зафиксирована в начальном положении держателями над центром оболочки, при этом держатели содержат электромагниты, электрически связанные с внешней системой синхронизации.

Термоядерная мишень может содержать шторки с электромагнитами, электрически связанными с внешней системой синхронизации.

Предложенное техническое решение предотвращает зарождение вышеупомянутых неустойчивостей, что достигается за счет отсутствия контакта капсулы с горючим с какими-то ни было конструкционными элементами в момент начала облучения внутренней поверхности оболочки внешним лазерным излучением и по ходу дальнейшего облучения. При этом нахождение капсулы с горючим в центре оболочки в момент начала этого облучения с точностью 10 мкм обеспечивается фиксацией капсулы с горючим над центром оболочки и синхронизацией начала облучения с действием держателей, управляемых внешней системой синхронизации и освобождающих капсулу с горючим таким образом, что ее свободное падение приводит к совпадению с вышеупомянутой точностью положения ее центра с центром оболочки в вышеупомянутый момент времени. Вертикальное перемещение центра капсулы с горючим под воздействием силы тяжести в процессе дальнейшего облучения внутренней поверхности оболочки лазерным излучением пренебрежимо мало вследствие малой длительности облучения, составляющей величину в несколько наносекунд, и малой скорости вертикального перемещения центра капсулы с горючим, составляющей величину порядка 0.1 м/с. Точность внешней системы синхронизации, обеспечивающей синхронизацию начала облучения внутренней поверхности оболочки внешним лазерным излучением с действием держателей, управляемых вышеупомянутой системой, определяется превышением h центра капсулы с горючим в начальном положении над центром оболочки. При выборе значения h=1 мм, совместимого с геометрическими параметрами оболочек, используемых в современных экспериментах, данная точность будет равна 70 мкс.

Настоящее устройство поясняется чертежами, где

на фиг. 1 схематично изображена конструкция заявляемой термоядерной мишени непрямого инициирования;

на фиг. 2. схематично изображено положение элементов конструкции заявляемой термоядерной мишени непрямого инициирования при облучении внутренней поверхности ее оболочки внешним лазерным излучением. Конструкционные элементы мишени, не используемые при вышеупомянутом облучении, не показаны.

Настоящая термоядерная мишень непрямого инициирования (фиг. 1) содержит капсулу с горючим 1 и оболочку 2, удерживающую рентгеновское излучение, создаваемое при облучении ее внутренней поверхности 3 внешним лазерным излучением, при этом капсула с горючим 1 размещена внутри оболочки 2 и зафиксирована в начальном положении над ее центром держателями 4-6, содержащими электромагниты 7-9, электрически связанные с внешней системой синхронизации.

Термоядерная мишень может содержать шторки 10-12 с электромагнитами, электрически связанными с внешней системой синхронизации.

Настоящая термоядерная мишень непрямого инициирования работает следующим образом.

Внешняя система синхронизации подает электрические импульсы на электромагниты 7-9, что вызывает срабатывание управляемых держателей 4-6 таким образом, что они освобождают капсулу с горючим 1 без сообщения ей импульса и выходят из оболочки 2 через отверстия в ней за время с момента освобождения капсулы с горючим 1, меньшее времени t1 ее свободного падения до совпадения ее центра, с точностью 10 мкм, с центром оболочки 2, приблизительно равное (2h/g)1/2, где ускорение свободного падения и h - превышение центра капсулы с горючим 1 в начальном положении над центром оболочки 2. Наряду с вышеизложенным, внешняя система синхронизации управляет внешним лазерным облучением внутренней поверхности 3 оболочки 2 таким образом, что оно начинается при совпадении, с точностью, до 10 мкм, центров капсулы с горючим 1 и оболочки 2, а также вызывает перемещение шторок 10-12 таким образом, что в период времени между выходом держателей 4-6 через отверстия в оболочке 2 за время менее £. и началом облучения внутренней поверхности 3 оболочки 2 происходит закрытие вышеупомянутых отверстий.

Заявляемая термоядерная мишень непрямого инициирования с капсулой с горючим находится на стадии ее облучения рентгеновским излучением в состоянии свободного падения. Отсутствие конструкционных элементов, фиксирующих капсулу с горючим в начале этой стадии, делает невозможным зарождение связанных с ними неустойчивостей и, тем самым, улучшит сжатие горючего. Результаты экспериментов, проведенных на NIF (National Ignition Facility, Lawrence Livermore National Laboratory, США), и численных расчетов, опубликованные в статье D.S. Clark et al., J. Phys.: Conf. Ser. Vol. 717, 012011 (2016), позволяют сделать вывод, что при использовании капсулы с горючим с пластиковым аблятором и низкоэнтропийного сжатия горючего термоядерное энерговыделение предложенной мишени существенно, в 3.9-15 раз, превзойдет соответствующий параметр существующих аналогов. Данный вывод основан на следующем.

В статье D.S. Clark et al., J. Phys.: Conf. Ser. Vol. 717, 012011 (2016) приведены результаты численного моделирования термоядерного энерговыделения при низкоэнтропийном сжатии горючего в четырех разных ситуациях. В первой ситуации сжатие горючего сферически симметрично, что соответствует сферически симметричному облучению капсулы с горючим и отсутствию вышеупомянутых неустойчивостей, связанных с фиксацией капсулы с горючим мембранами. Во второй ситуации симметрия сжатия горючего нарушена исключительно вследствие соответствующей условиям экспериментов на NIF асимметрии облучения капсулы с горючим, т.е. полагается, что неустойчивостей, связанных с фиксацией капсулы с горючим мембранами, нет. Предсказываемое термоядерное энерговыделение в этой ситуации Y2 в восемь раз меньше предсказываемого термоядерного энерговыделения в первой ситуации Y1. В третьей ситуации симметрия сжатия горючего нарушена исключительно вследствие неустойчивостей, связанных с фиксацией капсулы с горючим мембранами, т.е. полагается, что облучение капсулы с горючим сферически симметрично. Предсказываемое термоядерное энерговыделение в этой ситуации Y3 в пятнадцать раз меньше Y1. В четвертой ситуации симметрия сжатия горючего нарушена вследствие как асимметрии облучения капсулы с горючим, так и вследствие неустойчивостей, связанных с ее фиксацией мембранами. Расчет предсказываемого термоядерного энерговыделения Y4 в этой ситуации в пятьдесят раз меньше Y1 и в 80 раз меньше экспериментально измеренного термоядерного энерговыделения Yexp (количественные параметры мишени и воздействующего на нее лазерного излучения, используемые при численном моделировании, соответствовали условиям эксперимента). Тот факт, что Y4 в 1.6 раза больше Yexp, характеризует достигнутую точность численного моделирования термоядерного энерговыделения. Эти результаты позволяют сделать вывод, что в случае существенного улучшения симметрии облучения капсулы с горючим предотвращение зарождения неустойчивостей, связанных с ее фиксацией мембранами, приведет к повышению термоядерного энерговыделения приблизительно в 9.3-15 раз (нижняя граница этого диапазона - отношение 15 к вышеупомянутому параметру 1.6). Тот факт, что Y2/Y4=50/8=6.25, соответствует тому, что при реально существующей асимметрии облучения капсулы с горючим предотвращение зарождения неустойчивостей, связанных с ее фиксацией мембранами, приведет к росту термоядерного энерговыделения в 6.25 раз. Консервативная оценка этого роста, учитывающая точность численного моделирования, соответствует множителю 6.25/1.6≈3.9. Таким образом, получается вышеупомянутый диапазон 3.9-15.

Создание предложенной мишени будет полезно, в первую очередь, для определения предельно достижимых параметров мишеней с пластиковыми абляторами и низкоэнтропийным сжатием горючего. В настоящее время полезность проводимых во всем мире исследований в области мишеней для лазерного термоядерного синтеза, в том числе - экономическая, в значительной степени определяется тем, что эти исследования являются одним из факторов, способствующих выполнению требований Договора о всеобъемлющем запрещении ядерных испытаний. В долгосрочной перспективе полученные результаты могут быть полезны для оптимизации конструкций мишеней термоядерных электростанций с инерциальным удержанием плазмы.

Наряду с вышеизложенным, увеличение термоядерного энерговыделения при создании и использовании предложенной мишени будет полезно для создания мощных импульсных источников термоядерных нейтронов, а также оптимизации методик защиты оптических элементов и стенок реакторных камер (т.е. камер, в которых проводятся микровзрывы) будущих термоядерных и гибридных электростанций с инерциальным удержанием плазмы (гибридная электростанция - электростанция с подкритическим ядерным реактором и термоядерным источником нейтронов) от высокоскоростных твердых и жидких объектов, возникающих при сравнительно малом термоядерном энерговыделении мишеней непрямого инициирования, недостаточном для превращения в плазму всех конструкционных элементов.

Мощные импульсные источники термоядерных нейтронов будут полезны для проведения материаловедческих исследований, связанных, в частности, с оптимизацией конструкций будущих термоядерных и гибридных электростанций, а также биологических исследований, связанных с радиационной терапией и радиационной безопасностью. Твердые и жидкие объекты, возникающие при сравнительно малом термоядерном энерговыделении, т.е. при неудачных попытках инициирования микровзрывов, из части материалов оболочек мишеней непрямого инициирования и движущиеся со скоростями порядка 10-1000 км/с, будут потенциально опасны для оптических элементов, используемых для фокусировки лазерного излучения на мишени, и стенок камер, в которых производятся микровзрывы. Для предотвращения повреждения этих конструкционных элементов необходима экспериментальная отработка методов их защиты при различных термоядерных энерговыделениях, в том числе - при тех, которые будут достигнуты при создании и использовании предложенной мишени.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 114.
20.04.2015
№216.013.42cf

Способ рентгеноспектрального определения размеров наночастиц в образце

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002548601
Дата охранного документа: 20.04.2015
20.07.2015
№216.013.64d4

Лазер-тиристор

Использование: для получения управляемой последовательности мощных лазерных импульсов. Сущность изобретения заключается в том, что лазер-тиристор содержит катодную область (1), включающую подложку n-типа проводимости (2), широкозонный слой n-типа проводимости (3), анодную область (4),...
Тип: Изобретение
Номер охранного документа: 0002557359
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.7371

Композиционный материал, поглощающий излучение в ближней ик области спектра

Изобретение относится к композиционным материалам, поглощающим инфракрасное излучение в ближней инфракрасной области, и может быть использовано, например, в оптических фильтрах и специальных панелях сложной формы. Композиционный материал включает переплетенные базальтовые волокна с диаметром от...
Тип: Изобретение
Номер охранного документа: 0002561123
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7491

Способ модификации поверхности пористого кремния

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в...
Тип: Изобретение
Номер охранного документа: 0002561416
Дата охранного документа: 27.08.2015
20.11.2015
№216.013.92aa

Тонкопленочный солнечный элемент

Тонкопленочный солнечный элемент содержит светопрозрачную подложку (1), на которую последовательно нанесены светопрозрачная электропроводящая пленка (2), p-слой (3) из микрокристаллического гидрогенизированного кремния в виде твердого раствора SiC:H, где 0,7<х<0,95, с оптической шириной...
Тип: Изобретение
Номер охранного документа: 0002569164
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97c3

Способ определения ориентации nv дефектов в кристалле

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации...
Тип: Изобретение
Номер охранного документа: 0002570471
Дата охранного документа: 10.12.2015
27.02.2016
№216.014.c07e

Способ получения кристаллических алмазных частиц

Изобретение относится к нанотехнологиям материалов. Способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас. % до 58 мас. %, выдержку...
Тип: Изобретение
Номер охранного документа: 0002576055
Дата охранного документа: 27.02.2016
27.03.2016
№216.014.c751

Концентраторный солнечный фотоэлектрический модуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4) на ее внутренней стороне, светопрозрачную тыльную панель (5), солнечные фотоэлементы (б) с байпасными диодами, планки (11), выполненные из...
Тип: Изобретение
Номер охранного документа: 0002578735
Дата охранного документа: 27.03.2016
27.02.2016
№216.014.ce4c

Способ изготовления фотопреобразователя на основе gasb

При изготовлении фотопреобразователя согласно изобретению на тыльной стороне подложки GaSb n-типа проводимости выращивают методом эпитаксии высоколегированный контактный слой n-GaSb, а на лицевой стороне подложки - буферный слой n-GaSb. Наносят на лицевую поверхность подложки диэлектрическую...
Тип: Изобретение
Номер охранного документа: 0002575972
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.ce65

Способ изготовления гетероструктурного солнечного элемента

Способ изготовления гетероструктурного солнечного элемента включает выращивание полупроводниковой гетероструктуры на германиевой подложке, создание омических контактов со стороны тыльной поверхности германиевой подложки и со стороны фронтальной поверхности гетероструктуры, нанесение...
Тип: Изобретение
Номер охранного документа: 0002575974
Дата охранного документа: 27.02.2016
+ добавить свой РИД