×
17.06.2023
223.018.7fc1

Результат интеллектуальной деятельности: Теплообменная поверхность

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплотехники и может быть применено в теплообменных аппаратах, использующихся в различных отраслях народного хозяйства. Изобретение заключается в выполнении теплообменной поверхности для интенсификации теплоотдачи при турбулентном течении теплоносителя в виде периодически нанесенных углублений, которые выполнены в форме бумеранга, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрическим торообразным сегментом длиной l=l+l таким образом, чтобы реализовывалось условие, что касательная к сегменту длиной l составляла угол =45° по отношению к направлению потока в начале углубления и угол 0° к сегменту углубления длиной l. Технический результат - увеличение тепловой и теплогидравлической эффективности теплообменной поверхности. 5 ил.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах.

Известна поверхность тела для уменьшения трения и поверхность тела для интенсификации теплообмена [Поверхность тела для уменьшения трения и поверхность тела для интенсификации теплообмена / Кикнадзе Г.И., Гачечиладзе И.А. // Патент РФ №2425260. Заявка 2009111020/06 от, 31.08.2006. Опубликовано 27.07.2011 Бюл. №21]. Поверхность характеризуется тем, что на гладкой поверхности с защитным слоем или без него выполнены углубления, образованные сопряженными по общим касательным выпуклыми и вогнутыми поверхностями второго порядка, при этом сопряжение углубления с исходно гладкой поверхностью осуществляется с помощью выпуклых поверхностей образующих скаты, для которых в местах сопряжения исходно гладкая поверхность является касательной, причем вогнутая поверхность, образующая донную часть углубления, выполнена гладкой или с обтекателем.

Недостатком теплообменной поверхности является низкая тепловая и теплогидравлическая эффективность и высокие потери энергии потока на трение.

Известна теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя, выполненная в виде периодически нанесенных углублений, отличающаяся тем, что углубления выполнены овально-траншейной формы [Патент РФ №2684303. МПК F28F 3/04 . Заявка 2018121892, 13.06.2018. Опубликовано: 05.04.2019 Бюл. №10], состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку, с геометрическими соотношениями: l/b=4,7-5,78 или lк/b=5,57-6,78; ϕ=45°; h/b=0,18-0,37; r=0,025b, где - длина цилиндрической части углубления, мм; - длина углубления, мм; - глубина, мм; b - ширина углубления, мм; r - радиус скругления кромок углубления, мм; ϕ - угол натекания потока на углубление, градусы.

Недостатком теплообменной поверхности является недостаточные тепловая и теплогидравлическая эффективности.

Наиболее близким аналогом к заявляемому изобретению является теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя, выполненная в виде периодически нанесенных углублений, отличающаяся тем, что углубления выполнены овально-дуговой формы [Патент РФ № 2716958, МПК F28F 3/04. 17.03.2020. Заявка: 2019124260, 26.07.2019. 17.03.2020 Бюл. №8], состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрическим торообразным сегментом длиной l таким образом, чтобы бы реализовывалось условие, что касательная к данному сегменту составляла угол ϕ=45° по отношению к направлению потока в начале углубления и угол ϕ=0° в конце углубления с геометрическими соотношениями: l/b=4,7-5,78 или lк/b=5,57-6,78; h/b=0,18-0,37; r=0,025b, где - длина цилиндрической части углубления, мм; - длина углубления, мм; - глубина, мм; b - ширина углубления, мм; r - радиус скругления кромок углубления, мм; ϕ - угол натекания потока на углубление, градусы.

Недостатком теплообменной поверхности является недостаточная теплогидравлическая эффективность.

Технической проблемой, на решение которой направлено заявляемое изобретение, является создание теплообменной поверхности с повышенной теплогидравлической эффективностью.

Технический результат, на достижение которого направлено данное изобретение, заключается в увеличении тепловой и теплогидравлической эффективности теплообменной поверхности.

Технический результат достигается за счет того, что теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя выполнена в виде периодически нанесенных углублений. Новым является то, что углубления выполнены в форме бумеранга, состоящего из двух половинок сферической выемки радиусом R, соединенных цилиндрическими сегментами длиной l=l1+l2 шириной b таким образом, чтобы бы реализовывалось условие, что ось сегмента длиной l1 составляла угол ϕ=45° по отношению к направлению потока в начале углубления и угол 0° к оси сегмента углубления длиной l2 (фиг.1), с геометрическими соотношениями:

относительной глубиной l/b=4,7-5,78 или lк/b=5,57-6,78,

относительной глубиной h/b=0,18-0,37;

соотношение длин l2/l1=0,5-0,6;

радиус скругления кромок r=0,025b;

=l1+l2 - длина цилиндрической части углубления, мм;

- длина углубления, мм;

- глубина, мм;

- радиус половинок сферической выемки, мм;

b=2R - ширина углубления, мм;

r - радиус скругления кромок углубления, мм;

ϕ - угол натекания потока на сегмент углубления длиной l1, градусы.

Данная форма теплообменной поверхности позволяет стабильность и интенсивность вихревого течения в углублении и тем самым увеличить тепловую и теплогидравлическую эффективность теплообменной поверхности в целом.

На фигуре 1 представлен вид сверху предлагаемой теплообменной поверхности с указанием условных обозначений геометрических размеров и направления течения потока относительно теплообменной геометрии.

На фигуре 2 представлен поперечный разрез в сечении А-А геометрии предлагаемой теплообменной поверхности с указанием условных обозначений геометрических размеров.

На фигуре 3 представлены распределения давления на поверхности с одиночным углублением в форме бумеранга при соотношение длин l2/l1 от 0 до 1,0.

На фигуре 4 представлены распределения чисел Нуссельта на поверхности с одиночным углублением в форме бумеранга при соотношение длин l2/l1 от 0 до 1,0.

На фигуре 5 представлен график изменения тепловой эффективности Nu/Nu0, прироста гидавлического сопротивления ξ/ξ0 и теплогидравлической эффективности E=(Nu/Nu0)/(ξ/ξ0)0,3 от соотношение длин l2/l1.

Данная геометрия углублений является поверхностным генератором спиралевидных высокоинтенсивных моновихрей в углублении и позволяет повысить скорость вторичного течения в нем до величин порядка характерной скорости потока в стесненном канале (среднемассовой или максимальной), что в несколько раз превышает скорости вторичного течения, индуцированные традиционными сферическими и овальными выемками, и отличается высокой стабильностью и интенсивностью вихревого течения в концевой части углубления по сравнению с аналогами в виде овальных, овально-траншейных и овально-дуговых углублений различного удлинения, обеспечивая значительное превосходство углублений в форме бумеранга по тепловой и теплогидравлической эффективности.

Сравнительный анализ теплообменных поверхностей с предлагаемой формой интенсификатора теплообмена в форме бумеранга проводился на основе численного моделирования по методологии [Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюкен: LAP LAMBERT Academic Publishing. 2013. 316 с.], прошла многочисленные апробации и верификации, реализована в программном комплексе "VP2/3 Thermophysics" [Программный комплекс "VP2/3 Thermophysics" для численного моделирования вихревой интенсификации теплогидродинамических процессов в теплообменных аппаратах / Исаев С.А., Баранов П.А., Усачов А.Е. // Свидетельство о государственной регистрации программы для ЭВМ №2015619439. Дата поступления 08.06.2015. Дата регистрации 03.09.2015].

Теплообменные поверхности с предлагаемой формой интенсификатора теплообмена в форме бумеранга позволяют ликвидировать низкоинтенсивные отрывные зоны с низкой скоростью вторичного течения в хвостовой части по внешнему потоку и повысить теплоотдачу в хвостовой части по сравнению с другими известными формами теплообменных поверхностей.

Результаты численного исследования распределения давления и чисел Нуссельта на поверхности с одиночным углублением в форме бумеранга представлены на фиг.3 и фиг.4, соответственно. Результаты приведены для отношения сторон углубления в форме бумеранга l2/l1=0-1,0 для чисел Рейнольдса Red=104. При этом необходимо указать, что при l2/l1=1,0 углубление является овально-траншейным.

Суммарное число Нуссельта Nu рассчитывается на контрольной площади окружающего углубление прямоугольного участка с учетом увеличения криволинейной поверхности выемки. Гидравлические потери ξ определяются по границам контрольного участка с углублением. Для сравнения рассчитывается число Нуссельта Nu0 и коэффициент гидравлического сопротивления ξ0 для ровной плоской поверхности, той же площади, что и для поверхности с углублением. Теплогидравлическая эффективность E=(Nu/Nu0)/(ξ/ξ0)0,3 рассчитывается как отношение тепловой эффективности Nu/Nu0 на выделенном участке к относительным гидравлическим потерям ξ)0 на границах участка.

В ходе численных исследований показано, что темп возрастания тепловой эффективности значительно опережает рост гидравлических потерь. Тепловая эффективность поверхности с углублением в форме бумеранга также максимальна при соотношении длин l2/l1=0,5 и составляет Nu/Nu0=1,115. Для сравнения для поверхности с овально-траншейным углублением (l2/l1=1,0) тепловая эффективность ниже - Nu/Nu0=1,09.

Гидравлические потери на участке поверхности с углублением в форме бумеранга также максимальны при соотношении длин l2/l1=0,5 и составляют ξ/ξ0=1,17. Однако для поверхности с овально-траншейным углублением (l2/l1=1,0) прирост гидравлического сопротивления ниже - ξ/ξ0=1,127.

В итоге, максимальная теплогидравлическая эффективность Е=1,06 получена для углубления в форме бумеранга с относительным удлинением lк/b=(l1+l2+b)/b=6,78 при соотношении длин l2/l1=0,5-0,6. Причем для сферического углубления E<1 при учете увеличения площади омываемой стенки канала. Для поверхности с овально-траншейным углублением (l2/l1=1,0) теплогидравлическая эффективность ниже - Е=1,05, чем для углубления в форме бумеранга.

Как показали расчеты, такие углубления в форме бумеранга обладают преимуществом по отношению к овально-траншейным углублениям по тепловой и теплогидравлической эффективностям.

Для обеспечения максимальной теплогидравлической эффективности рекомендуется 50-60% отклонение хвостовой части овально-траншейной выемки по потоку, т.е. рекомендуемое значение l2/l1=0,5-0,6 (фиг. 5).

Таким образом, сравнение предлагаемой конструкции теплообменной поверхности с углублениями в форме бумеранга по теплогидравлической эффективности (критерию аналогии Рейнольдса) с поверхностью с овально-траншейными углублениями, которые превосходят сферические и овальные, показывает преимущество углублений в форме бумеранга при соблюдении геометрических соотношений размеров углубления: l/b=4,7-5,78 или lк/b=5,57-6,78; l2/l1=0,5-0,6; ϕ=45°; h/b=0,18-0,37; r=0,025b, длиной l1, градусы.

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
01.09.2019
№219.017.c556

Топливовоздушная горелка и форсуночный модуль топливовоздушной горелки

Изобретение относится к газотурбинному двигателестроению, в частности к конструкциям камер сгорания газотурбинных двигателей, наземных газотурбинных двигателей, применяемых в качестве привода нагнетателя газоперекачивающего агрегата или электрогенератора. Топливовоздушная горелка содержит...
Тип: Изобретение
Номер охранного документа: 0002698621
Дата охранного документа: 28.08.2019
Показаны записи 1-10 из 34.
27.01.2013
№216.012.210a

Способ определения расходования ресурса и спектра нагрузок основных элементов планера маневренных самолетов

Изобретение относится к области оценки прочности и вопросам технической эксплуатации авиационной техники, а именно к информационным системам, предназначенным для определения, вычисления и индивидуального учета расходования ресурса, а также спектра нагрузок основных элементов планера маневренных...
Тип: Изобретение
Номер охранного документа: 0002473959
Дата охранного документа: 27.01.2013
20.05.2013
№216.012.4172

Вакуумная гидроустановка

Изобретение относится к области энергетики и может быть использовано на любой равнинной местности, где имеется водоем или резервуар с водой. Вакуумная гидроустановка содержит герметичную камеру 25, в которой создается давление ниже атмосферного, куда доставляется вода. В герметичной камере 25...
Тип: Изобретение
Номер охранного документа: 0002482324
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41cb

Способ предотвращения образования и роста углеродистых отложений на стенках теплообменных каналов

Изобретение относится к области энергетики, в частности к способам предотвращения отложений на стенках теплообменных каналов, и может быть применено в энергоустановках многоразового использования на жидких углеводородных горючих. Технический результат заключается в предотвращении отложений на...
Тип: Изобретение
Номер охранного документа: 0002482413
Дата охранного документа: 20.05.2013
27.11.2013
№216.012.85af

Маслосъемное поршневое устройство двигателя внутреннего сгорания

Изобретение относится к машиностроению. В поршневой канавке (7) установлены верхнее скребковое кольцо (3) и нижнее скребковое кольцо (6), между которыми расположено расширительное кольцо (4) с радиальными пазами (5), сообщающими полость, расположенную между стенкой цилиндра (1) и поверхностью...
Тип: Изобретение
Номер охранного документа: 0002499901
Дата охранного документа: 27.11.2013
20.01.2014
№216.012.98e8

Способ определения конфигурации распространения силовых линий электростатических полей в жидких углеводородных средах

Изобретение относится к области исследования электростатических полей в различных средах и условиях, преимущественно в области жидких углеводородных горючих в условиях их естественной конвекции. Устанавливают отдающий и принимающий электроды. Между электродами фиксировано устанавливают на...
Тип: Изобретение
Номер охранного документа: 0002504843
Дата охранного документа: 20.01.2014
10.04.2014
№216.012.b412

Теплообменник-реактор

Изобретение относится к области теплотехники и может быть использовано в энергетике, нефтехимической и других отраслях промышленности, в частности в процессах, протекающих с большими тепловыми эффектами. Теплообменник-реактор содержит корпус (1) в форме усеченного конуса с днищами (2) и (3),...
Тип: Изобретение
Номер охранного документа: 0002511815
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c58f

Способ изготовления конусообразных труб для теплообменных аппаратов и устройство для его осуществления

Изобретение относится к энергетическому и химическому машиностроению, в частности к производству труб с переменными диаметрами по длине и может быть использовано в производстве конусообразных теплообменных аппаратов. Гибку и последующую формовку ведут последовательным воздействием на развертку...
Тип: Изобретение
Номер охранного документа: 0002516334
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c820

Кожухотрубный теплообменник

Изобретение относится к теплоэнергетической, химической и нефтехимической промышленности и предназначено для использования в многотоннажных промышленных установках. В кожухотрубном теплообменнике, содержащем корпус с днищами, трубный пучок, закрытый с двух сторон трубными решетками,...
Тип: Изобретение
Номер охранного документа: 0002516998
Дата охранного документа: 27.05.2014
20.10.2014
№216.013.00b5

Система регистрации данных

Изобретение относится к приборостроительной технике и может быть использовано на летательных аппаратах для обработки, хранения и отображения полетной информации. Технический результат заключается в расширении функциональных возможностей за счет обеспечения диагностики состояния летательных...
Тип: Изобретение
Номер охранного документа: 0002531573
Дата охранного документа: 20.10.2014
10.02.2015
№216.013.229d

Способ получения полимерных композиционных материалов с нанонаполнителями и установка для его осуществления

Изобретение относится к области нанотехнологии, а именно к полимерным композиционным материалам с нанонаполнителями. Способ включает дезагрегацию наноразмерных частиц путем разбиения агрегатов наноразмерных частиц и последующее модифицирование полимерного материала наноразмерными частицами....
Тип: Изобретение
Номер охранного документа: 0002540314
Дата охранного документа: 10.02.2015
+ добавить свой РИД