×
17.06.2023
223.018.7f2d

Результат интеллектуальной деятельности: Способ изготовления микромодуля

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле, и может быть использовано при производстве аппаратуры с высокоплотным монтажом. Cпособ изготовления микромодуля включает формирование на коммутационной плате коммутационных слоев, сквозных металлизированных отверстий, монтаж бескорпусного кристалла, создание электрических соединений между бескорпусным кристаллом и платой микросваркой, формирование пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков, заливку компаундом пространства, образованного между коммутационными платами и корпусирование. Согласно изобретению бескорпусной кристалл монтируют в предварительно профилированную коммутационную плату после создания коммутационных слоев со стороны, не занятой коммутационными слоями путем последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого «сухим» травлением последовательно в Бош-процессе для коммутации платы с бескорпусным кристаллом через предварительно сформированную спреевым методом фоторезистивную маску. Изобретение обеспечивает возможность изготовления микромодуля с уменьшенными массогабаритными характеристиками и повышенной степенью интеграции. 5 з.п. ф-лы, 3 ил.

Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле (активных кристаллов) или конструктивных элементов (пассивных чип-компонентов), сформированных внутри одной несущей подложки и сгруппированных по блокам в единую сборку и может быть использовано при производстве аппаратуры с высокоплотным монтажом.

Из уровня техники известно техническое решение (RU 2 651 543. Опубл. 20.04.2018. Бюл. № 11. [1]), относящееся к способу изготовления микроэлектронного узла. Бескорпусные кристаллы устанавливают лицевой стороной на технологическую подложку со слоем клея, совмещая их контактные площадки с реперными знаками. На технологическую подложку устанавливают технологическую рамку, совмещая окно рамки с реперными знаками на технологической подложке. Герметизируют бескорпусные кристаллы, заполняют зазор между кристаллами и рамкой клеем, шлифуют обратную сторону кристаллов и рамки, приклеивают кристаллодержатель. Снимают технологическую подложку, затем многоуровневую коммутацию контактных площадок кристаллов и внешних контактных площадок изготавливаемого микроэлектронного узла, на которых в защитном слое формируют выступающие выводы, и вырезают изготавливаемый микроэлектронный узел из кристаллодержателя.

К недостаткам известного технического решения относится низкие технологичность, эффективность и степень интеграции из-за размещения кристаллов на одном уровне.

Наиболее близким по технической сущности и достигаемому эффекту является техническое решение известное из (RU 2 705 229. Опубл. 06.11.2019. Бюл. № 31. [2]). Согласно известному техническому решению способ трехмерного многокристального корпусирования интегральных микросхем памяти предусматривает следующую последовательность операций:

- обеспечение пластины с кристаллами памяти и подложки, имеющей контактные площадки с двух сторон;

- ламинирование лицевой стороны поверхности пластины;

- утонение пластины шлифовкой и полировкой ее обратной поверхности;

- монтаж утоненной пластины обратной поверхностью на пленочный носитель с клеевым пленочным слоем, закрепленный на рамке;

- резка утоненной пластины на отдельные кристаллы;

- разогрев подложки и монтаж кристаллов с клеевым пленочным слоем на подложку с лицевой стороны в стек со смещением, оставляющим открытыми контактные площадки кристаллов;

- обработка в сушильной печи подложки с установленными кристаллами для полимеризации клеевого пленочного слоя;

- очистка контактных площадок кристаллов и подложки с лицевой стороны;

- создание электрических соединений между контактными площадками кристалла и контактными площадками подложки с лицевой стороны;

- очистка подложки с установленными кристаллами;

- герметизация компаундом подложки с установленными кристаллами;

- отчистка контактных площадок подложки с обратной стороны;

- установка паяльных шариков на контактные площадки подложки с обратной стороны и их оплавление в печи;

- разделение подложки дисковыми пилами на отдельные интегральные микросхемы памяти.

При осуществлении способа из RU 2 705 229 для корпусирования многокристальной интегральной микросхемы памяти подбирают материалы ядра подложки и компаунда с коэффициентами температурного расширения не более 5⋅10-6 К-1, причем разница между коэффициентами температурного расширения материалов ядра подложки и компаунда не более 2⋅10-6 К-1. Выдерживают разницу между температурами подложки при монтаже кристаллов и при заливке компаундом не более 70°С. Толщину кристалла на этапе утонения пластины подбирают таким образом, чтобы суммарная толщина стека кристаллов с учетом клеевых пленочных слоев примерно равнялась разнице между толщиной интегральной микросхемы памяти и удвоенной толщиной подложки.

К недостаткам известного технического решения относится низкие технологичность, эффективность и степень интеграции из-за необходимости размещения кристаллов один над другим в стек (пирамидкой) с последовательным уменьшением их геометрических размеров от основания.

Заявляемый в качестве изобретения способ изготовления микромодуля направлен на повышение технологичности конструкции, степени интеграции и, как следствие, уменьшение массогабаритных характеристик.

Указанный результат достигается тем, что предложен способ изготовления микромодуля, включающий формирование на коммутационной плате коммутационных слоев, сквозных металлизированных отверстий, монтаж бескорпусного кристалла, создание электрических соединений между бескорпусным кристаллом и платой микросваркой, формирование пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков, заливку компаундом пространства, образованного между коммутационными платами и корпусирование. Бескорпусной кристалл монтируют в предварительно профилированную коммутационную плату после создания коммутационных слоев со стороны, не занятой коммутационными слоями, путем последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом.

Также, в качестве материала коммутационной платы используют монокристаллический кремний.

Формирование глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия для коммутации платы с бескорпусным кристаллом осуществляют «сухим» травлением последовательно в Бош-процессе через предварительно сформированную маску.

Последовательное формирование глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом осуществляют со стороны, не занятой коммутационными слоями через предварительно сформированную спреевым методом фоторезистивную маску.

Перед формированием пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков коммутационные платы подвергают шлифовке со стороны, не занятой коммутационными слоями на величину h, определяемую из соотношений:

h≤(Нкр+lадг)/3, Нкр>>lадг, где

Нкр - толщина бескорпусного кристалла, мкм,

lадг - толщина слоя адгезива после монтажа бескорпусного кристалла, мкм.

После шлифовки со стороны, не занятой коммутационными слоями, методами микрообработки формируют дополнительные коммутационные слои.

Сущность заявляемого способа поясняется графическими материалами (фиг. 1, 2 и 3):

фиг. 1 - блок-схема технологического процесса изготовления микромодуля в виде последовательности изображений разрезов;

фиг. 2 - составные части микромодуля перед их сборкой и собранная конструкция;

фиг. 3 - блок-схема технологического процесса последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом.

На фиг. 1 и фиг. 2 обозначены:

поз. а - исходная подложка коммутационной платы на основе монокристаллического кремния;

поз. б - подложка коммутационной платы после формирования коммутационного слоя;

поз. в - подложка коммутационной платы после формирования диэлектрического слоя;

поз. г - формирование сквозных отверстий;

поз. д - металлизация сквозных отверстий;

поз. е - формирование коммутационного слоя;

поз. з - формирование глухого отверстия;

поз. и - формирование сквозного отверстия для монтажа бескорпусного кристалла;

поз. к - формирование адгезива для монтажа бескорпусного кристалла;

поз. л - монтаж бескорпусного кристалла;

поз. м - шлифовка со стороны, не занятой коммутационными слоями;

поз. н - разварка бескорпусного кристалла;

поз. о - коммутационная плата с установленными шариками;

поз. п - коммутационная плата с установленными шариками;

поз. р - микромодуль после сборки и заливки компаундом.

На фиг. 3 обозначены:

поз. с - подложка коммутационной платы с сформированными коммутационными слоями;

поз. т - нанесенный с двух сторон подложки спреевым методом фоторезистивный слой;

поз. у - сформированная со стороны, не занятой коммутационными слоями, фоторезистивная маска для травления глухого отверстия;

поз. ф - сформированное «сухим» травлением в Бош-процессе глухое отверстие для монтажа бескорпусного кристалла;

поз. х - сформированная со стороны, не занятой коммутационными слоями, фоторезистивная маска для травления сквозного отверстия;

поз. ц - формирование «сухим» травлением в Бош-процессе сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом;

поз. ч - сформированное «сухим» травлением в Бош-процессе сквозное отверстие внутри глухого для коммутации платы с бескорпусным кристаллом.

Осуществление изобретения можно пояснить следующим образом.

Как и было указано выше, предложенный способ изготовления микромодуля характеризуется следующими отличительными признаками:

- бескорпусной кристалл монтируют в предварительно профилированную коммутационную плату после создания коммутационных слоев со стороны, не занятой коммутационными слоями путем последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом;

- в качестве материала коммутационной платы используют монокристаллический кремний;

- формирование глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом осуществляют «сухим» травлением последовательно в Бош-процессе через предварительно сформированную маску;

- последовательное формирование глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом осуществляют со стороны, не занятой коммутационными слоями через предварительно сформированную спреевым методом фоторезистивную маску;

- перед формированием пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков коммутационные платы подвергают шлифовке со стороны, не занятой коммутационными слоями на величину h, определяемую из соотношений:

h≤(Нкр+lадг)/3, Нкр>>lадг, где

Нкр - толщина бескорпусного кристалла, мкм,

lадг - толщина слоя адгезива после монтажа бескорпусного кристалла, мкм;

- после шлифовки коммутационной платы со смонтированным бескорпусным кристаллом со стороны, не занятой коммутационными слоями, методами микрообработки формируют дополнительные коммутационные слои.

Монтаж бескорпусного кристалла осуществляют на предварительно профилированную коммутационную плату после создания коммутационных слоев со стороны, не занятой коммутационными слоями путем последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом, что обеспечивает технологичность конструкции за счет возможности проведения литографии после монтажа кристалла. Использование в качестве материала коммутационной платы монокристаллического кремния позволяет сформировать глухое и сквозное отверстия «сухим» травлением в Бош-процесса с высокой точностью, что невозможно выполнить другими методами и что также обеспечивает технологичность. Использование спреевого нанесения для формирования фоторезистивной маски позволяет осуществлять последовательно глухое и сквозное отверстия «сухим» травлением в Бош-процессе со стороны, не занятой коммутационными слоями.

Перед формированием пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков коммутационные платы подвергают шлифовке со стороны, не занятой коммутационными слоями, что приводит к уменьшению массогабаритных характеристик устройства и повышению степени интеграции. Величина h, определяемая из соотношений h≤(Нкр+lадг)/3, Нкр>>lадг где Нкр - толщина бескорпусного кристалла, мкм, lадг - толщина слоя адгезива после монтажа бескорпусного кристалла, мкм, выбрана из соображений прочности конструкции. Формирование дополнительных коммутационных слоев после шлифовки со стороны, не занятой коммутационными слоями обеспечивает при необходимости снижение массогабаритных характеристик и увеличение степени интеграции.

Таким образом, предложен технологичный способ изготовления микромодуля, обеспечивающий изготовление с уменьшенными массогабаритными характеристиками и повышенной степенью интеграции.

Источники информации

1. Низов В.Н. Способ изготовления микроэлектронного узла. RU 2 651 543. Патентообладатель: Акционерное общество «Авиаавтоматика» имени В.В. Тарасова». Заявка: 2016148054, 07.12.2016. Опубл. 20.04.2018. Бюл. № 11.

2. Путролайнен В.В., Беляев М.А., Перминов В.В. Способ трехмерного многокристального корпусирования интегральных микросхем памяти. RU 2 705 229. Патентообладатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Петрозаводский государственный университет» Заявка: 2019106268, 05.03.2019. Опубл. 06.11.2019. Бюл. № 31.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 99.
26.08.2017
№217.015.d429

Станция (система) приёма и обработки информации от среднеорбитального сегмента космической системы поиска и спасания и способ управления наведением антенн этой станции

Изобретение относится к технике связи и может использоваться в системах космической связи. Технический результат состоит в повышении надежности связи и точности определения координат радиобуев. Для этого станция приёма информации от аварийных радиобуев космической системы поиска и спасания...
Тип: Изобретение
Номер охранного документа: 0002622390
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.d85b

Способ информационного обеспечения запусков космических аппаратов ракетами космического назначения и наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений, предусматривающий использование способа

Изобретение относится к области космонавтики, в частности к комплексам средств измерений, сбора и обработки информации (КСИСО) от ракет-носителей (РН) и наземным измерительным комплексам (НИК) разгонных блоков (РБ). Во время информационного обеспечения запусков космических аппаратов ракетами...
Тип: Изобретение
Номер охранного документа: 0002622514
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d8a3

Мобильный измерительный пункт комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков

Изобретение относится к космической технике. Мобильный измерительный пункт включает центральный пост управления, комплекс обработки информации, радиотелеметрический комплекс, периферийную земную станцию спутниковой связи, антенную систему, средства локальной вычислительной сети, средства...
Тип: Изобретение
Номер охранного документа: 0002622508
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d9f0

Датчик электростатического поля

Предлагаемое изобретение относится к области измерительной техники, а именно к средствам измерения напряженности электростатических полей, в том числе и в условиях космического пространства. Датчик электростатического поля содержит вибрационный модулятор, состоящий из катушки индуктивности,...
Тип: Изобретение
Номер охранного документа: 0002623690
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.daab

Цифровое устройство предыскажения радиосигналов четными гармониками

Изобретение относится к области радиопередающих устройств и может быть использовано в составе бортовой аппаратуры космических аппаратов. Технический результат заключается в уменьшении величины интермодуляционных искажений третьего и пятого порядка сигналов радиопередающих устройств. Устройство...
Тип: Изобретение
Номер охранного документа: 0002623807
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.de3a

Способ определения взаимного положения объектов по сигналам глобальных навигационных спутниковых систем

Изобретение относится к области дифференциальных навигационных систем и применимо для высокоточной навигации, геодезии, ориентации объектов в пространстве по сигналам глобальных навигационных спутниковых систем (ГНСС – ГЛОНАСС, GPS, Galileo, Bei Dou и другие), в которых осуществляется измерение...
Тип: Изобретение
Номер охранного документа: 0002624268
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dfdc

Система и способ контроля удалённого оборудования

Изобретение относится к вычислительной техники. Система контроля удалённого оборудования состоит из удалённых объектов управления с контроллером, средств интерфейса объектов управления и средств контроля. В состав объектов управления входят удалённая база данных, сервер управления...
Тип: Изобретение
Номер охранного документа: 0002625209
Дата охранного документа: 12.07.2017
19.01.2018
№218.016.01b8

Способ получения и обработки изображений дистанционного зондирования земли, искажённых турбулентной атмосферой

Изобретение относится к области оптического приборостроения и касается способа получения и обработки изображений дистанционного зондирования Земли (ДЗЗ), искажённых турбулентной атмосферой. Способ включает в себя получение в широком поле зрения одного спектрально фильтруемого...
Тип: Изобретение
Номер охранного документа: 0002629925
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.01e6

Способ изготовления сквозных металлизированных микроотверстий в кремниевой подложке

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении 3D-устройств микросистемной техники и полупроводниковых приборов, содержащих в своей структуре металлизированные и/или неметаллизированные сквозные отверстия в кремнии различного...
Тип: Изобретение
Номер охранного документа: 0002629926
Дата охранного документа: 04.09.2017
20.01.2018
№218.016.1005

Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа

Изобретение относится к области тепловизионной техники и касается способа обработки термовидеоинформации. Способ включает в себя видеозапись теплового излучения исследуемого объекта, транспонирование полученного видеоизображения в видимый диапазон и генерацию видеосигнала, в котором разной...
Тип: Изобретение
Номер охранного документа: 0002633645
Дата охранного документа: 16.10.2017
Показаны записи 11-20 из 41.
20.07.2014
№216.012.de4c

Способ изготовления метаматериала (варианты)

Группа изобретений относится к области микроэлектроники - технологии изготовления слоистых изделий - и может быть использована при создании электродинамических и/или антенных устройств, содержащих в своей структуре слоистый материал со специфическими электрическими свойствами и обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002522694
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df04

Микромеханическая система

Изобретение относится к микросистемной технике для создания электростатически управляемых микромеханических резонаторов для датчикопреобразующей аппаратуры и микрореле для коммутации СВЧ и НЧ аналоговых электрических цепей. Система содержит микромеханический исполнительный элемент,...
Тип: Изобретение
Номер охранного документа: 0002522878
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e9b1

Солнечная батарея для малоразмерных космических аппаратов и способ ее изготовления

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ)....
Тип: Изобретение
Номер охранного документа: 0002525633
Дата охранного документа: 20.08.2014
10.07.2015
№216.013.5f1e

Микроструктурная многослойная экранно-вакуумная изоляция космических аппаратов

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин. Каждая микропластина...
Тип: Изобретение
Номер охранного документа: 0002555891
Дата охранного документа: 10.07.2015
27.10.2015
№216.013.8823

Микросистемный космический робот-инспектор (варианты)

Изобретение относится к области микроробототехники, в которой основными подвижными элементами конструкции являются устройства микросистемной техники, выполненные по технологиям микрообработки кремния. Робот-инспектор может быть использован при создании систем, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002566454
Дата охранного документа: 27.10.2015
10.06.2016
№216.015.4566

Способ фотолитографии

Изобретение относится к электронной технике, в частности к процессам формирования топологических элементов микроэлектронных устройств с использованием электрохимического осаждения и взрывной литографии. Способ фотолитографии включает формирование первого слоя позитивного фоторезиста путем, по...
Тип: Изобретение
Номер охранного документа: 0002586400
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7526

Микросистемный захват

Изобретение относится к микросистемной технике, в частности к микроробототехнике, и может быть использовано в исполнительных устройствах роботов при манипулировании микрообъектами сложных конфигураций и сыпучих материалов, например, в космической технике, для забора проб грунта планет, комет и...
Тип: Изобретение
Номер охранного документа: 0002598416
Дата охранного документа: 27.09.2016
25.08.2017
№217.015.d24c

Двунаправленный тепловой микромеханический актюатор и способ его изготовления

Использование: для изготовления микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы. Сущность изобретения заключается в том, что микромеханический актюатор выполнен в виде сформированной в меза-структуре упруго-шарнирной консольной балки, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002621612
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d38f

Кремниево-полиимидное гибкое сочленение для микросистем

Использование: для создания систем, обеспечивающих микроперемещения. Сущность изобретения заключается в том, что кремниево-полиимидное гибкое сочленение для микросистем содержит соединяемые полиимидной вставкой кремниевые элементы, при этом в кремниевых элементах выполнены отверстия,...
Тип: Изобретение
Номер охранного документа: 0002621465
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.e736

Способ измерения электрических параметров и характеристик без демонтажа объекта исследования, а также устройства для его реализации

Изобретения могут использоваться в электронной, космической, авиационной, военной и других отраслях промышленности. Способ измерения электрических параметров или характеристик объекта исследования, установленного в электронном устройстве или блоке без демонтажа объекта исследования с печатной...
Тип: Изобретение
Номер охранного документа: 0002627281
Дата охранного документа: 04.08.2017
+ добавить свой РИД