×
17.06.2023
223.018.7eec

МАГНИТОРЕЗОНАНСНЫЙ ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложен плазменный двигатель. Двигатель содержит соленоиды, расположенные во внешнем сердечнике-ферромагнетике, плазменный ускоритель и дуанты, катод-компенсатор, автономный источник низкотемпературной плазмы, корпус ускорителя, канал подачи рабочего тела в ионизатор, газовые трубки. Дополнительно содержит генератор переменного поля дуантов. В окне сброса пучка на дуантах зафиксирована юстированная площадка, в щелях которой располагается профилированный электростатический дефлектор. Соленоиды установлены в корпуса катушек постоянного электромагнита. При этом соленоиды намотаны на вкладыши с сохранением кольцевых каналов коридорного типа, предназначенных для протекания охлаждающего теплоносителя. Подводящие каналы теплоносителя расположены на крышках катушек, а отводящие каналы - на корпусе катушки. Автономный источник низкотемпературной плазмы дополнительно содержит электрод-коллектор и электрод-экстрактор. При реализации изобретения обеспечивается уменьшение тепловых потерь мощности на выходных газовых каналах плазменного ускорителя, снижение температуры соленоидов во внешнем сердечнике-ферромагнетике, повышение устойчивости рабочего тела в плазменном ускорителе, исключение утечек рабочего тела в плазменный ускоритель. 1 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к устройствам, предназначенным для эффективного маневрирования и коррекции орбиты малых космических аппаратов и автоматических межпланетных станций.

Известен плазменный двигатель с замкнутым дрейфом электронов RU 2702709 С1, МПК F03H 1/00, опубл. 09.10.2019 г. Плазменный двигатель с замкнутым дрейфом электронов содержит, по меньшей мере, один катод-компенсатор, разрядную систему и магнитную систему с магнитным контуром. Внешний силуэт магнитного контура выполнен эллипсообразной формы с усечением, которое образует межполюсный промежуток. Усечение магнитного контура выполнено перпендикулярно оси плазменного двигателя. Магнитный контур дополнительно неразрывно усечен с противоположной стороны относительно межполюсного промежутка. Магнитный контур вдоль оси симметрии может выполняться полым. Магнитная система может быть выполнена горообразной формы. В полости магнитной системы может быть расположен катод-компенсатор.

Недостатком данной конструкции является технический предел увеличения удельного импульса двигателя.

Наиболее близкой по технической сущности к предлагаемому устройству является циклотронный плазменный двигатель RU 2578551 С2, МПК F03H 1/00, Н05Н 1/54, опубл. 27.03.2016 г. Двигатель содержит автономный источник низкотемпературной плазмы, систему улавливания нейтральных частиц и регенерации ионов, разделитель потоков электронов и ионов, плазменный ускоритель. Плазменный ускоритель представляет собой асинхронный циклотрон, разделенный вдоль на дуанты двумя соосными парами параллельных сеток с зазорами, создающими однородные, равные и постоянные ускоряющие электрические поля взаимно противоположного направления векторов напряженности, имеющий выходные газовые каналы плазменного ускорителя - основные переходники-ферромагнетики с соленоидами; выходные прямые газовые диэлектрические каналы двигателя, соединенные с основными переходниками через пропускные электроклапаны, а между собой - переходниками-ферромагнетиками с соленоидами. Магнитное поле внутри плазменного ускорителя создается группой соленоидов, размещенных внутри цилиндрического ферромагнетика, частью своей являющегося цилиндрической стенкой плазменного ускорителя.

Недостатками данной конструкции являются большие потери тепловой мощности на выходных газовых каналах плазменного ускорителя, высокая температура группы соленоидов во внешнем сердечнике-ферромагнетике, малая устойчивость рабочего тела в плазменном ускорителе, утечки нейтрального рабочего тела в плазменный ускоритель.

Техническим результатом изобретения является уменьшение тепловых потерь мощности па выходных газовых каналах плазменного ускорителя, снижение температуры соленоидов во внешнем сердечнике-ферромагнетике, повышение устойчивости рабочего тела в плазменном ускорителе, исключение утечек рабочего тела в плазменный ускоритель.

Технический результат достигается тем, что плазменный двигатель, содержащий соленоиды, расположенные во внешнем сердечнике-ферромагнетике, плазменный ускоритель и дуанты, катод-компенсатор, автономный источник низкотемпературной плазмы, корпус ускорителя, канал подачи рабочего тела в ионизатор, газовые трубки, при этом дополнительно содержит генератор переменного поля дуантов, в окне сброса пучка на дуантах зафиксирована юстированная площадка, в щелях которой располагается профилированный электростатический дефлектор, соленоиды установлены в корпуса катушек постоянного электромагнита, при этом соленоиды намотаны на вкладыши с сохранением кольцевых каналов коридорного типа, предназначенных для протекания охлаждающего теплоносителя, при этом подводящие каналы теплоносителя расположены на крышках катушек, а отводящие каналы на корпусе катушки, автономный источник низкотемпературной содержит теплообменный аппарат с коридорной системой каналов соленоида сердечника-ферромагнетика;

В целях уменьшения тепловых потерь мощности на выходных газовых каналах плазменного ускорителя плазменный двигатель содержит профилированный электростатический дефлектор; для снижения температуры селеноидов во внешнем сердечнике-ферромагнетике плазменный двигатель дополнительно содержит конвективный теплообменный аппарат с коридорной системой каналов соленоида внешнего сердечника-ферромагнетика; с целью повышения устойчивости рабочего тела в плазменном ускорителе плазменный двигатель дополнительно содержит генератор переменного тока дуантов; в целях исключения утечек рабочего тела в плазменный ускоритель автономный источник низкотемпературной плазмы содержит электрод-коллектор и электрод-экстрактор.

Изобретение поясняется фигурами.

Фиг. 1 - Плазменный двигатель,

Фиг. 2 - Поперечный разрез плазменного двигателя в плоскости ускорения рабочего тела;

Фиг. 3 - Продольный разрез плазменного двигателя в плоскости внешнего сердечника-ферромагнетика;

Фиг. 4 - Поперечный разрез автономного источника низкотемпературной плазмы плазменного двигателя.

Плазменный двигатель содержит: корпус ускорителя 1, к которому прикреплен крепежный уголок катода-компенсатора 2, а также внешний сердечник-ферромагнетик 3 через стойки сердечника ферромагнетика 4 уложенные в пазах корпуса ускорителя 1 (Фиг. 1). На оси крепежного уголка катода-компенсатора 2 установлен керамический изолятор катода-компенсатора 5 в центральной части которого зафиксирован накаляемый катод 6, а на выходном торце керамического изолятора 7 катода-компенсатора 5, приклеены текстолитовые изоляторы катода-компенсатора 5 с расположенной между ними системой фокусирующих отверстий 8 (Фиг 2). Во внешнем сердечнике-ферромагнетике 3 установлены каналы подачи рабочего тела в ионизатор 9, стянутые шайбами 10 и контрящими гайками 11 (Фиг. 3). К торцам каналов подачи рабочего тела в ионизатор 9 (Фиг. 3) подсоединены на хомуты 12 газовые трубки 13 (Фиг. 1, Фиг. 3). Корпуса катушек 14 постоянного электромагнита установлены на фиксаторах 15 при этом они отделены от внешнего сердечника-ферромагнетика тепловыми изоляторами 16, а между собой соединены стойками 17 (Фиг. 1). В корпуса катушек 14 постоянного электромагнита уложены соленоиды 18, которые намотаны на вкладыши 19 с сохранением кольцевых каналов коридорного типа 20 и выведены из корпуса катушки 14 через токовводы 21 в крышках катушек 22 постоянного электромагнита (Фиг. 3). При этом подводящие каналы 23 расположены на крышках катушек 22, а отводящие каналы 24 на корпусе катушки 14 постоянного электромагнита. Между полюсами электромагнита 25 установлены, параллельно друг другу, дуанты 26, отделенные от внешнего сердечника-ферромагнетика 3 плазменным ускорителем 27 (Фиг. 2, Фиг. 3). В ложу дуантов 28, через кольца 29 установлена рубашка охлаждения 30 (Фиг. 2). В окне сброса пучка 31 па дуантах 26 зафиксирована юстированная площадка 32, в щелях которой располагается профилированный электростатический дефлектор 33 (Фиг. 2). В ускоряющий промежуток между дуантами 26 в центральном канале установлен автономный источник низкотемпературной плазмы 34, который состыкован с каналами подачи рабочего тела в ионизатор 9 коническими диффузорами 35, вкрученными в керамические стаканы 36 (Фиг. 2, Фиг. 3, Фиг. 4). Анодные питатели 37 отделены от конических диффузоров 35 текстолитовыми изоляторами 38 автономного источника низкотемпературной плазмы 34, и припаяны к кольцевым анодам 39 (Фиг. 4). В корпусах 40 автономного источника низкотемпературной плазмы 34 вклеены кольцевые аноды 41 (Фиг. 4). Между анодами 39 и 41 располагаются кольцевые катоды 42, связанные электрической цепью через изоляторы на анодных питателях 37 и формирующие межэлектродные каналы 43 для области положительного столба плазмы 44. В торце кольцевых катодов 42 и анодов 39, 41 располагается торцевой изолятор 45, на котором лежит электрод-коллектор 46, стянутый электродами-экстракторами 47 с отверстием в одном из электродов.

Плазменный двигатель работает следующим образом. Топливо, которым выступает инертный газ - ксенон, поступает в двигатель через газовые трубки 13, а затем внутри внешнего сердечника-ферромагнетика 3 движется по каналам подачи рабочего тела в ионизатор 9 до автономного источника низкотемпературной плазмы 34, в котором через конический диффузор 35, попадает в межэлектродные каналы 43 автономного источника низкотемпературной плазмы 34. В межэлектродных каналах 43 сосредоточена разность потенциалов между кольцевым катодом 42 и кольцевыми анодами 39 и 41. При прохождении электрически нейтрального рабочего тела в межэлектродном канале 43 оно ионизируется коронирующим разрядом от электродов 42 и 39, 41. При этом выбитые электроны уходят в электрическую цепь кольцевых анодов 39, 41, а положительно заряженные ионы отталкиваются от кольцевых анодов 39, 41 и формируют область положительного столба плазмы 44 в межэлектродных каналах 43. Из области положительного столба 44 ионы отбираются электродом-коллектором 46, к которому приложен потенциал превышающий потенциал кольцевого катода 42. Таким образом, отбор плазмы в плазменный ускоритель 27 осуществляется электрическим способом. При этом утечкам нейтрального газа через межэлектродные каналы 43 препятствует область положительного столба плазмы 44. Два потока ионов, истекающих из области положительного столба плазмы 44, встречаются в центре автономного источника низкотемпературной плазмы 34 и взаимно гасят осевые компоненты скоростей, что позволяет электродам-экстракторам 47 направить встречные потоки ионов на дуанты 26 в плазменном ускорителе 27. Под действием переменного электрического поля от внешнего генератора переменного тока, приложенного к дуантам 26, и постоянного магнитного поля, сформированного соленоидами 18 во внешнем сердечнике-ферромагнетике 3 и сосредоточенного между полюсами электромагнита 25, положительно заряженные ионы ускоряются и увеличивают свой радиус обращения в плазменном ускорителе 27 до вылета через окно сброса пучка 31 в дуантах 26. Магнитное поле удерживает ионы в плазменном ускорителе 27 и заставляет их двигаться по окружности. При этом переменное электрическое поле, воздействующее на пучки ионов только в ускоряющем зазоре, увеличивает их скорость обращения и радиус. Двигаясь по разворачивающейся к периферии спирали пучки достигают необходимой скорости из-за многократного прохождения ускоряющего промежутка в резонансе, что повышает устойчивость транспортировки пучков ионов в плазменном ускорителе 27 под действием автофазировки как свойства устойчивой колебательной системы. По достижению предельного радиуса обращения пучки ионов сбрасываются через окно сброса пучка 31 благодаря юстированному на площадке 32 профилированному электростатическому дефлектору 33, под постоянным электрическим потенциалом. Это позволяет исключить каналы вывода пучка и снизить тепловые потери от работы отклоняющей системы за счет отсутствия токов для постоянных магнитных полей. Когда пучки ионов покидают магниторезонансный плазменный двигатель, часть их заряда компенсируется катодом-компенсатором 2 через систему фокусирующих отверстий 8 при постоянном градиенте потенциала. Система фокусирующих отверстий 8 направляет электронный луч на пучки ионов, и накаляемый катод 6, который создает электронное облако для луча. Для поддержания более низкой заданной температуры соленоида 18 во внешнем сердечнике-ферромагнетике 3 и сохранении величины индукции магнитного поля в плоскости ускорения рабочего тела, соленоиды 18 во внешнем сердечнике-ферромагнетике 3 охлаждаются теплоносителем через кольцевые каналы коридорного типа 20 в полостях вкладышей 19. Для интенсификации теплообмена между соленоидом 18 и теплоносителем, подводящие 23 и отводящие 24 каналы в корпусе катушки 14 и на ее крышке 22 выполнены смещенными. Для съема тепла, выделяющегося при ускорении рабочего тела в виде излучения с дуантов 26, предусмотрена рубашка охлаждения 30, с целью исключения температурных деформациям дуантов 26. Для увеличения площади теплообмена рубашка охлаждения 30 установлена в ложе 28 дуантов 26 на их внешней стороне.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 28.
13.01.2017
№217.015.8ad9

Способ программного регулирования плоского глубинного шлифования периферией круга

Изобретение относится к области авиастроения и может быть использовано для обработке деталей малой длины методом глубинного шлифования периферией круга при формировании управляющих программ обработки. Способ включает управление процессом обработки, при котором сообщают продольную подачу...
Тип: Изобретение
Номер охранного документа: 0002604088
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8b04

Образец для испытания материалов на пластическое одноосное растяжение

Изобретение относится к испытательной технике, а именно к образцам для определения прочностных характеристик материалов при пластическом одноосном растяжении, и может найти применение в различных отраслях промышленности. Образец содержит захватные части и рабочую часть в виде стержня. Захватные...
Тип: Изобретение
Номер охранного документа: 0002604111
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.97e8

Шунгит как модификатор для алюминиево-кремниевых сплавов

Изобретение относится к области металлургии и может быть использовано при получении литых доэвтектических, эвтектических и заэвтектических алюминиево-кремниевых сплавов (силуминов). При выплавке указанных сплавов в качестве модификатора используют шунгит. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002609109
Дата охранного документа: 30.01.2017
25.08.2017
№217.015.b1ca

Способ определения удельного износа шлифовального круга

Изобретение относится к обработке материалов шлифованием и может быть использовано для оценки режущих свойств абразивного материала шлифовальных кругов. Осуществляют закрепление кольца, имеющего базовую наружную поверхность, на планшайбе шлифовального круга соосно с его рабочей поверхностью...
Тип: Изобретение
Номер охранного документа: 0002613254
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b4fd

Способ изготовления штамповок лопаток из титановых сплавов

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления штамповок лопаток ГТД из титановых сплавов. Способ изготовления штамповок лопаток из титановых сплавов включает выдавливание заготовки в изотермических условиях при одинаковой температуре нагрева...
Тип: Изобретение
Номер охранного документа: 0002614294
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.cae8

Способ испытания зенкера, предназначенного для обработки предварительно просверленного отверстия

Изобретение относится к области обработки резанием и может быть использовано для испытания зенкеров и исследования обрабатываемости конструкционных материалов зенкерованием. Сущность: зенкер вводят в контакт с обрабатываемой деталью и производят ее обработку, причем деталь и зенкер располагают...
Тип: Изобретение
Номер охранного документа: 0002620030
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.dc6f

Способ изготовления модификатора для литейных алюминиевых сплавов в виде прутка с запрессованным рассыпчатым модификатором на основе наноуглерода

Изобретение относится к литейному производству в области металлургии, в частности к модифицированию литейных алюминиевых сплавов. Пруток изготавливают путем раскатки алюминиевой пластины до толщины 0,2-0,3 мм, рекристаллизации полученной алюминиевой ленты при температуре 200-300°С, нанесения...
Тип: Изобретение
Номер охранного документа: 0002624272
Дата охранного документа: 03.07.2017
29.12.2017
№217.015.f3bd

Способ выдавливания малопластичных материалов и устройство для его осуществления

Изобретение относится к обработке металлов давлением и может быть использовано при выдавливании малопластичных материалов. Размещенную в матрице заготовку выдавливают рабочим пуансоном через очко матрицы. Одновременно с началом выдавливания заготовки начинают подачу смазки в очаг пластической...
Тип: Изобретение
Номер охранного документа: 0002637451
Дата охранного документа: 04.12.2017
19.01.2018
№218.016.0332

Система информационной поддержки разработчика программного обеспечения для микроконтроллеров

Изобретение относится к системе информационной поддержки разработчика программного обеспечения для микроконтроллеров. Технический результат заключается в автоматизации разработки программного обеспечения для микроконтроллеров. Система содержит компьютер с модулем управления, подключенное к нему...
Тип: Изобретение
Номер охранного документа: 0002630389
Дата охранного документа: 07.09.2017
10.05.2018
№218.016.3936

Способ изготовления оболочковых форм по выплавляемым моделям

Изобретение относится к литейному производству. Изготавливают оболочковую форму путем послойного нанесения суспензии на модель и обсыпку каждого слоя зернистым материалом. Осуществляют сушку и отверждение ее. Модель выплавляют. Обсыпку слоев зернистым материалом и сушку совмещают. Сушку...
Тип: Изобретение
Номер охранного документа: 0002647074
Дата охранного документа: 13.03.2018
Показаны записи 1-6 из 6.
27.12.2014
№216.013.1466

Противоточная водород-кислородная камера сгорания

Изобретение относится к устройствам, предназначенным для перегрева водяного пара при организации рабочего процесса паровых, парогазовых энергетических установок и газоперекачивающих агрегатов. Противоточная водород-кислородная камера сгорания содержит воспламенитель, форсунки горючего,...
Тип: Изобретение
Номер охранного документа: 0002536646
Дата охранного документа: 27.12.2014
20.01.2015
№216.013.1e7a

Вихревая водород-кислородная камера сгорания

Изобретение относится к устройствам, предназначенным для создания потока перегретого водяного пара за счет сжигания водород-кислородной смеси в паровой среде. Может использоваться в ракетных двигателях, циклах комбинированных и паротурбинных энергетических установок. Вихревая...
Тип: Изобретение
Номер охранного документа: 0002539243
Дата охранного документа: 20.01.2015
10.11.2015
№216.013.8c51

Генератор акустических колебаний для камеры сгорания гпврд

Изобретение относится к области авиационного двигателестроения и может быть использовано в камере сгорания гиперзвукового воздушно-реактивного двигателя. Генератор акустических колебаний для камеры сгорания гиперзвукового воздушно-реактивного двигателя содержит свечу зажигания, топливные сопла,...
Тип: Изобретение
Номер охранного документа: 0002567528
Дата охранного документа: 10.11.2015
17.04.2019
№219.017.15cb

Вихревая горелка

Изобретение относится к устройствам для сжигания топливных ресурсов и может применяться для розжига камер сгорания ГТУ и стабилизации фронта пламени в них. Вихревая горелка содержит вихревую камеру, сопло, свечу зажигания, форсунку, обечайку, полусферическую крышку, резьбовой штуцер сжатого...
Тип: Изобретение
Номер охранного документа: 0002310794
Дата охранного документа: 20.11.2007
20.04.2023
№223.018.4bd1

Энергоэффективное микрофакельное горелочное устройство

Изобретение относится к области энергетики. Энергоэффективное микрофакельное горелочное устройство содержит камеру сгорания, состоящую из диффузорного, конфузорного и цилиндрического участков, закручивающее устройство, охлаждающий канал, кожух, воспламенитель. Также содержит ступень подвода...
Тип: Изобретение
Номер охранного документа: 0002760607
Дата охранного документа: 29.11.2021
30.05.2023
№223.018.72db

Устройство для обезвреживания газообразных отходов

Изобретение относится к области термической переработки газообразных отходов для обезвреживания вредных и/или имеющих неприятный запах газов. Оно может применяться в любой сфере деятельности, в процессе которой выделяются газообразные отходы. Технический результат заключается в упрощении...
Тип: Изобретение
Номер охранного документа: 0002738542
Дата охранного документа: 14.12.2020
+ добавить свой РИД