×
17.06.2023
223.018.7eb2

Результат интеллектуальной деятельности: ДИЦИКЛОПРОПАНИРОВАННЫЙ 5-ВИНИЛ-2-НОРБОРНЕН И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к органическому синтезу и более конкретно к способу получения дициклопропанированного 5-винил-2-норборнена, включающему растворение 5-винил-2-норборнена в органическом растворителе, добавление соли палладия (II), охлаждение полученного раствора до (-15)-(-20)°С, добавление раствора диазометана к раствору 5-винил-2-норборнена и перемешивание полученного раствора в течение 2-2.5 часов при этой температуре, затем нагревание раствора до комнатной температуры и перемешивание в течение 20-24 часов, фильтрацию полученной реакционной смеси и последующее упаривание в вакууме 40-50 мм рт.ст. при комнатной температуре с удалением органического растворителя и получением целевого продукта - дициклопропанированного 5-винил-2-норборнена. Технический результат - получение целевого продукта с выходом, близким к количественному - до 97-99%. 2 з.п. ф-лы, 2 ил., 2 табл., 4 пр.

Изобретение относится к органическому синтезу, и более конкретно к новому соединению - дициклопропанированному 5-винил-2-норборнену (6-циклопропилтрицикло[3.2.1.02,4]октану), структурной формулы 1

который может быть использован как компонент высокоэнергоемких топлив для авиации и способу его получения.

За последние 100 лет летательные аппараты претерпели значительные изменения с тех пор, как братья Райт впервые осуществили управляемый полет человека в 1903 году. При этом вместе с летательными аппаратами изменились и параметры используемого в них топлива. Поскольку современные аэрокосмические аппараты ограничены в объеме, часто эксплуатируются при низких температурах и на больших высотах, а также должны преодолевать длинные дистанции без дополнительной заправки, некоторые эксплуатационные характеристики топлива, такие, как плотность, объемная теплота сгорания, температура замерзания и вязкость, становятся особенно важными.

На данный момент наиболее широко используемым авиационным топливом по-прежнему является керосин различных марок, который получают дистилляцией нефтяных фракций. Однако постепенно керосин вытесняется синтетическими видами топлива, ввиду того, что они превосходит керосин по эксплуатационным характеристикам [X. Zhang, L. Pan, L. Wang, J.-J. Zou. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids // Chemical Engineering Science. 2018. 180. 95-125].

Столь сильная разница в свойствах обусловлена тем, что синтетические топлива состоят из алициклических углеводородов, полициклическая структура которых способствует более высокой плотности, а энергия напряжения малых циклов благоприятно сказывается на теплоте сгорания.

Примером такого синтетического топлива является трициклический углеводород - экзо-тетрагидродициклопентадиен (JP-10) структурной формулы 2

широко используемый ВМС и ВВС США в качестве стандартного топлива, который имеет высокую плотность (0.94 г/мл) и объемную теплоту сгорания (39.6 МДж/л), а также низкую температуру замерзания (-79°С) [H.S. Chung, C.S.H. Chen, R.A. Kremer, J.R. Boulton, G.W. Burdette. Recent developments in high-energy density liquid hydrocarbon fuels // Energy Fuels. 1999. 13. 641-649].

Одним из способов увеличения плотности и объемной теплоты сгорания углеводородов, являющихся одними из важнейших характеристик жидкого авиационного топлива, от которых зависит мощность двигателя и дальность полета аэрокосмических транспортных средств, является введение в структуру их молекул циклопропанового фрагмента.

Ранее на основе дициклопентадиена (ДЦПД) и норборнена были получены соответствующие циклопропановые производные с привлекательными свойствами: плотностью, температурами застывания и теплотой сгорания. При этом было продемонстрировано, что данные соединения по своим энергетическим характеристикам сопоставимы, а по некоторым превосходят наиболее широко используемое авиационное топливо JP-10, характеристики которого представлены в Таблице 1 [С.Н. Oh, D.I. Park, J.H. Ryu, J.H. Cho, J. Han. Syntheses and characterization of cyclopropane-fused hydrocarbons as new high energetic materials // Bull. Korean Chem. Soc. 2007. 28. 322].

Таким образом, углеводороды, содержащие в своей структуре фрагменты циклопропана, являются перспективными компонентами энергоемкого авиационного топлива.

Задача настоящего изобретения заключается в поиске новых углеводородов, содержащих в своей структуре фрагменты циклопропана и являющихся перспективными компонентами энергоемкого авиационного топлива, а также разработке простых и эффективных способов синтеза таких соединений.

Поставленная задача решается тем, что впервые получено и выделено циклопропанированное производное норборнена - дициклопропанированный 5-винил-2-норборнен структурной формулы

представляющее собой бесцветную жидкость, характеризующуюся плотностью ρ20, равной 954 кг/м3, и теплотами сгорания - низшей массовой, QHm, равной 42719 кДж/кг, и низшей объемной, QHV, равной 40754 кДж/дм3.

Молекула полученного и выделенного нового соединения -дициклопропанированного 5-винил-2-норборнена - 6-циклопропилтрицикло[3.2.1.02,4]октан (1) содержит два фрагмента циклопропана и фрагмент норборнана, который является довольно напряженным, и его присутствие в молекуле обеспечивает высокие топливные характеристики полученного и выделенного нового углеводорода - плотность и теплоту сгорания, и как следствие, высокий потенциал нового углеводорода в качестве энергоемкого авиационного топлива.

Некоторые основные свойства дициклопропанированного 5-винил-2-норборнена представлены в таблице 2.

Измерение теплоты сгорания и плотности дициклопропанированного 5-винил-2-норборнена.

Высшую удельную теплоту сгорания дициклопропанированного 5-винил-2-норборнена измеряют при помощи калориметра IKA С200 по стандартной методике в соответствии с ГОСТ 21261-91.

Низшую теплоту сгорания рассчитывают исходя из массовой доли водорода в чистом веществе в соответствии с ГОСТ 21261-91.

Плотность дициклопропанированного 5-винил-2-норборнена измеряют на вибрационном плотномере ВИП-2МР по стандартной методике в соответствии с ГОСТ Р 57037-2016.

Температуру кристаллизации дициклопропанированного 5-винил-2-норборнена измеряют при помощи аппарата Кристалл-20Э по стандартной методике в соответствии с ГОСТ 18995.5-73.

Структура, полученного соединения дициклопропанированного 5-винил-2-норборнена, отвечающего структурной формуле (1), подтверждена 1Н и 13С ЯМР спектроскопией.

На фиг. 1 представлен спектр протонного ядерного магнитного резонанса (1Н ЯМР спектр) ранее неописанного и впервые полученного соединения, отвечающего структурной формуле (1). В спектре 1Н наблюдается сигналы только в алифатической области (от 1.77 м.д. до 0.00 м.д.). Количество сигналов, их положение и относительная интенсивность полностью соответствуют предполагаемой структуре полученного соединения.

На фиг. 2 представлен спектр углеродного ядерного магнитного резонанса (13С ЯМР спектр) ранее неописанного и впервые полученного соединения, отвечающего структурной формуле (1). Количество сигналов в спектре 13С также соответствует ранее неописанному и впервые полученному соединению со структурной формулой (1).

Поставленная задача решается также с помощью способа получения дициклопропанированного 5-винил-2-норборнена, включающего растворение 5-винил-2-норборнена в органическом растворителе, добавление соли палладия (II), охлаждение полученного раствора до (-15)-(-20)°С, добавление раствора диазометана к раствору 5-винил-2-норборнена и перемешивание полученного раствора в течение 2-2.5 часов при этой температуре, затем нагревание раствора до комнатной температуры и перемешивание в течение 20-24 часов, фильтрацию полученной реакционной смеси и последующее упаривание в вакууме 40-50 мм рт.ст. при температуре при комнатной температуре с удалением органического растворителя и получением целевого продукта - дициклопропанированного 5-винил-2-норборнена.

В качестве органического растворителя используют тетрагидрофуран или диэтиловый эфир.

В качестве соли палладия (II) предпочтительно используют ацетат или ацетилацетонат палладия, но также могут использованы другие соли Pd (II) (хлорид, сульфат и т.п.) и комплексы палладия (II).

Для удаления катализатора из реакционной смеси используют фильтрование через слой целита - Celite® S типа Celite® 545 либо Celite® 555.

Целит - это хорошо промытая белая глина, которую используют для фильтрования, чтобы избавиться от мелкодисперсных примесей, которые могут находиться в реакционной смеси. Реакцию можно проводить в различных растворителях и с другими палладиевыми катализаторами.

Технический результат от использования предлагаемого изобретения заключается в получении нового соединения, ранее не описанного, с более высокими топливными характеристиками: более высокой теплотой сгорания по сравнению с известными производными норборнена (например, JP-10) и в ряде случаев более высокой плотностью.

Также предлагаемый способ позволяет получать целевой продукт - дициклопропанированный 5-винил-2-норборнен с выходом, близким к количественному - до 97-99%.

Данное изобретение иллюстрируют следующие примеры конкретного выполнения.

Пример 1

К раствору 5-винил-2-норборнена (10 г, 0.084 моль, 1 экв.) в диэтиловом эфире (100 мл) добавляют ацетат палладия (II) (100 мг). Полученный раствор охлаждают до -15°С. Затем к реакционной смеси по каплям добавляют эфирный раствор диазометана с концентрацией 0.7 моль/л (480 мл, полученный из 40.0 г N-нитрозо-N-метилмочевины). Раствор перемешивают в течение 2 часов при этой температуре, затем нагревают до комнатной температуры и перемешивают в течение 24 часов. Затем реакционную смесь фильтруют через целит типа Celite® 545 и упаривают в вакууме 40 мм рт.ст. при температуре 20°С.

Получают бесцветную жидкость - дициклопропанированный 5-винил-2-норборнен (6-циклопропилтрицикло[3.2.1.02,4]октан), отвечающий структурной формуле (1).

Выход вещества составляет 99%.

Структура вещества подтверждена спектрами 1Н ЯМР и 13С ЯМР. Смесь двух изомеров (сигналы минорного изомера представлены в скобках). 1Н ЯМР (400 МГц, CDCl3): δ -0.07 - -0.02 (м, 1Н), 0.02 - 0.09 (м, 2Н), 0.35 - 0.44 (0.49 - 0.55 (м)) (м, 3Н), 0.60 (0.65 - 0.67 (м)) (д, JHH=10.5 Гц, 1H), 0.73 - 0.84 (м, 2Н), 0.91 - 1.01 (м, 2Н), 1.04 - 1.10 (1.14 - 1.28 (м)) (m, 2Н), 1.68 (1.52 -1.58 (м)) (дт, JHH=3.8 Гц, JHH=11.3 Гц, 1Н), 2.10 - 2.25 (м, 2Н). 13С ЯМР (100 МГц, CDCl3): δ 1.0 (2.4), 3.4 (3.7), 4.3 (4.5), 10.2 (15.1), 12.4 (15.5), 15.0 (16.4), 27.9 (24.3), 35.7 (36.0), 36.7 (38.0), 39.7 (41.2), 48.2 (48.8).

Пример 2

К раствору 5-винил-2-норборнена (10 г, 0.084 моль, 1 экв.) в диэтиловом эфире (100 мл) добавляют ацетилацетонат палладия (II) (100 мг). Полученный раствор охлаждают до -15°С. Затем к реакционной смеси по каплям добавляют эфирный раствор диазометана с концентрацией 0.7 моль/л (480 мл, полученный из 40.0 г N-нитрозо-N-метилмочевины). Раствор перемешивают в течение 2 часов при этой температуре, затем нагревают до комнатной температуры и перемешивают в течение 24 часов. Затем реакционную смесь фильтруют через целит - Celite® 545, упаривают в вакууме 45 мм рт.ст., при температуре 20°С.

Получают бесцветную жидкость - дициклопропанированный 5-винил-2-норборнен (6-циклопропилтрицикло[3.2.1.02,4]октан), отвечающий структурной формуле (1).

Выход соединения составляет 98%.

Пример 3

К раствору 5-винил-2-норборнена (10 г, 0.084 моль, 1 экв.) в тетрагидрофуране (100 мл) добавляют ацетилацетонат палладия (II) (100 мг). Полученный раствор охлаждают до -20°С. Затем к реакционной смеси по каплям добавляют раствор диазометана в тетрагидрофуране с концентрацией 0.7 моль/л (480 мл, полученный из 40.0 г N-нитрозо-N-метилмочевины). Раствор перемешивают в течение 2.5 часов при этой температуре, затем нагревают до комнатной температуры и перемешивают в течение 20 часов. Затем реакционную смесь фильтруют через целит - Celite® 555, упаривают в вакууме 50 мм рт.ст., при температуре 25°С.

Получают бесцветную жидкость - дициклопропанированный 5-винил-2-норборнен (6-циклопропилтрицикло[3.2.1.02,4]октан), отвечающий структурной формуле (1).

Выход соединения составляет 97%.

Пример 4

К раствору 5-винил-2-норборнена (10 г, 0.084 моль, 1 экв.) в тетрагидрофуране (100 мл) добавляют ацетат палладия (II) (100 мг). Полученный раствор охлаждают до -20°С. Затем к реакционной смеси по каплям добавляют раствор диазометана в тетрагидрофуране с концентрацией 0.7 моль/л (480 мл, полученный из 40.0 г N-нитрозо-N-метилмочевины). Раствор перемешивают в течение 2,5 часов при этой температуре, затем нагревают до комнатной температуры и перемешивают в течение 20 часов. Затем реакционную смесь фильтруют через целит Celite® 555 и упаривают в вакууме 50 мм рт.ст. при температуре 25°С.

Получают бесцветную жидкость - дициклопропанированный 5-винил-2-норборнен (6-циклопропилтрицикло[3.2.1.02,4] октан), отвечающий структурной формуле (1).

Выход соединения составляет 98%.

Таким образом, выходы дициклопропанированного 5-винил-2-норборнена во всех примерах, независимо от условий проведения синтеза, близки к количественным.

Таким образом, измеренные свойства свидетельствуют о том, что введение циклопропанового фрагмента оказывает положительное влияние на эксплуатационные характеристики соединения (дициклопропанированного 5-винил-2-норборнена) по сравнению с JP-10. В частности, увеличились плотность и теплота сгорания. Характеристики полученного дициклопропанированного 5-винил-2-норборнена существенно превосходят известное авиационное топливо JP-10, наиболее широко применяемое синтетическое энергоемкое топливо.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 141.
29.12.2017
№217.015.fe80

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в...
Тип: Изобретение
Номер охранного документа: 0002638350
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1452

Аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7, способ его получения и способ разделения газовых смесей с его применением

Изобретение относится к синтезу новых аддитивных сополимеров на основе трициклононенов и разделению газовых смесей с помощью мембран на основе этих сополимеров. Предложен аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7 формулы (I), где n и m –...
Тип: Изобретение
Номер охранного документа: 0002634724
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4703

Способ измерения скорости циркуляции мелкодисперсного катализатора

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора,...
Тип: Изобретение
Номер охранного документа: 0002650623
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4c18

Способ получения винилиденовых олефинов

Изобретение относится к области промышленного получения ненасыщенных углеводородов с заданной структурой, а именно к способу получения винилиденовых олефинов. Способ включает димеризацию альфа-олефинов, таких как гексен-1, октен-1, децен-1, в присутствии продукта взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002652118
Дата охранного документа: 25.04.2018
Показаны записи 51-57 из 57.
12.04.2023
№223.018.464c

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2-винилнорборнана (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемого топлива, в частности ракетного и для дальней авиации....
Тип: Изобретение
Номер охранного документа: 0002739190
Дата охранного документа: 21.12.2020
12.04.2023
№223.018.4656

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2, 2'- бис (норборнанила) (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемкого топлива, в частности ракетного и для...
Тип: Изобретение
Номер охранного документа: 0002739242
Дата охранного документа: 22.12.2020
15.05.2023
№223.018.5821

Способ получения кокса с пониженным содержанием серы (варианты)

Изобретение относится к области нефтепереработки и коксохимии, в частности, к области получения нефтяного кокса с пониженным содержанием серы путем предварительного окисления сернистых соединений, содержащихся в сырье для коксования, до соответствующих сульфонов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002768163
Дата охранного документа: 23.03.2022
21.05.2023
№223.018.6aa6

Способ получения микропористого трехфазного композита

Изобретение относится к области получения цеолитов на основе композитов, а именно - к способу получения микропористого трехфазного композита ZSM-5/ZSM-11/ZSM-12, впервые применяя в качестве темплата четвертичную аммониевую соль - хлорид моноэтанол-N,N,N-триметиламмония. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002795599
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.6aa7

Способ получения микропористого трехфазного композита

Изобретение относится к области получения цеолитов на основе композитов, а именно - к способу получения микропористого трехфазного композита ZSM-5/ZSM-11/ZSM-12, впервые применяя в качестве темплата четвертичную аммониевую соль - хлорид моноэтанол-N,N,N-триметиламмония. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002795599
Дата охранного документа: 05.05.2023
23.05.2023
№223.018.6d45

Способ получения аддитивных полимеров на основе норборнена (варианты)

Предлагаемое изобретение относится к двум вариантам способа получения полимеров на основе соединений норборненового ряда. Согласно одному из вариантов способ получения аддитивного полимера соединения на основе норборнена путем смешения соединения на основе норборнена с органическим...
Тип: Изобретение
Номер охранного документа: 0002768465
Дата охранного документа: 24.03.2022
16.06.2023
№223.018.7a90

Способ получения 2-этилиденнорборнана

Изобретение относится к способу получения 2-этилиденнорборнана путем гидрирования 5-этилиден-2-норборнена. Способ характеризуется тем, что гидрирование 5-этилиден-2-норборнена ведут гидразингидратом в присутствии окислителя, в качестве которого используют воздух, и катализатора, в качестве...
Тип: Изобретение
Номер охранного документа: 0002739032
Дата охранного документа: 21.12.2020
+ добавить свой РИД