×
16.06.2023
223.018.7c95

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО КОНЦЕНТРАТОРНОГО МОДУЛЯ

Вид РИД

Изобретение

Аннотация: Способ изготовления фотоэлектрического концентраторного модуля включает формирование множества солнечных элементов, формирование вторичных концентраторов солнечного излучения, расположенных соосно над солнечными элементами, формирование панели первичных концентраторов, расположенных соосно над вторичными концентраторами. Для формирования вторичных концентраторов солнечного излучения изготавливают разборную полую форму в виде правильной четырехгранной усеченной пирамиды с внутренней зеркальной поверхностью и с меньшим основанием, совпадающим по размерам с поверхностью солнечного элемента. Устанавливают разборную полую форму меньшим основанием на поверхность солнечного элемента, заполняют полую форму жидкой смесью силиконовых компонентов, на поверхность жидкой смеси силиконовых компонентов устанавливают совпадающую по размерам с большим основанием полой формы стеклянную пластину. Полимеризуют смесь силиконовых компонентов при температуре, равной усредненной рабочей температуре вторичного концентратора в рабочем режиме при освещении модуля солнечным излучением, а после завершения полимеризации разбирают полую форму и отделяют детали полой формы от изготовленного вторичного концентратора. Изобретение обеспечивает упрощение технологии изготовления вторичного концентратора, приводящее к снижению стоимости изготовления фотоэлектрического концентраторного модуля. 4 з.п. ф-лы.

Изобретение относится к области солнечной энергетики и, в частности, к фотоэлектрическим концентраторным модулям. Настоящее изобретение предназначено для применения в концентраторных солнечных энергоустановках, используемых в качестве систем энергоснабжения в различных климатических зонах. Преобразование концентрированного солнечного излучения является наиболее высокоэффективным методом получения электроэнергии из возобновляемых источников. Увеличение эффективности работы фотоэлектрического концентраторного модуля и соответственно снижение стоимости электроэнергии можно достичь путем разработки технологии изготовления оптических концентраторов солнечного излучения.

Известен способ изготовления фотоэлектрического концентраторного модуля (см. патент WO 2006128417, МПК H01L 31/052, опубликован 07.12.2006), включающий формирование множества фотоэлектрических преобразователей, каждый из которых содержит по крайней мере один солнечный элемент, с меньшей фоточувствительной областью чем фотоэлектрическое устройство, формирование оптических устройств для первичного и вторичного концентрирования солнечного излучения на фоточувствительную поверхность солнечного элемента, при этом солнечные элементы соединены друг с другом на прозрачном основании путем формирования проводящих дорожек на обратной стороне прозрачного основания, либо при использовании печатной платы или проводящей пленки с проводящими дорожками; а обратная сторона солнечных элементов подсоединена к теплоотводящему основанию.

Недостатком известного способа изготовления фотоэлектрического концентраторного модуля является сложность совмещения системы контактирования с солнечными элементами, невозможность точной юстировки солнечных элементов в фокусе первичного концентратора, технологическая сложность изготовления оптических устройств с высокой точностью юстировки.

Известен способ изготовления фотоэлектрического концентраторного модуля (см. заявка US 2011180143 МПК H01L 31/0232, опубликована 28.07.2011), включающий последовательное формирование по меньшей мере одного солнечного элемента и концентрирующей системы линз, при этом солнечный элемент расположен в фокусе концентрирующей системы линз. Концентрирующую систему линз выполняют нанесением на прозрачную подложку, выполненную из стекла или полимера, ламинирующей пленки из термически отверждаемого полимерного материала, ламинирующую пленку нагревают до температуры размягчения, негативную матрицу фокусирующей структуры накладывают на ламинирующую пленку и проводят отверждение пленки путем остужения. Полимерный материал может быть выполнен из этиленвинилацетата и термически отверждаемых иономеров из этилена и производных карбоновой кислоты, при этом группы карбоновых кислот могут быть нейтрализованы ионами металлов. Фокусирующую структуру выполняют из стекла или прозрачного полимера в форме линзы Френеля, либо в форме плосковыпуклой линзы. Негативную матрицу фокусирующей структуры выполняют из металла или сплава металлов либо из фторуглеродного полимера или силикона, с нанесенным антиадгезионным покрытием. Концентрирующая система линз включает первичный и вторичный концентраторы, причем вторичный концентратор расположен в фокусе первичного концентратора.

Недостатком известного способа изготовления фотоэлектрического концентраторного модуля является низкое качество вторичного концентратора, обусловленное методом его изготовления.

Известен способ изготовления фотоэлектрического концентраторного модуля (см. заявка TW 200735390, МПК H01L 31/0232, опубликована 16.09.2007), включающий формирование фотоэлектрического устройства, солнечного элемента с меньшей фоточувствительной областью, чем на входе в фотоэлектрическое устройство, первичного и вторичного оптических блоков для концентрации или фокусировки солнечного излучения на фоточувствительную область солнечного элемента, который находится на расстоянии от входа солнечного излучения и расположен на прозрачной опоре. При этом металлические контакты к солнечному элементу наносят на прозрачную опору напылением проводящего материала, а тыльную сторону солнечного элемента присоединяют к теплоотводящему основанию. Вторичный оптический блок выполняют прокаткой материала на основе стекла роликом заданной формы.

Недостатком известного способа изготовления фотоэлектрического концентраторного модуля является сложность процесса изготовления вторичного оптического блока путем прокатки материала на основе стекла, требующего высокой температурной обработки, а также низкая точной юстировки солнечного элемента в фокусе вторичного оптического блока.

Известен способ изготовления фотоэлектрического концентраторного модуля (см. патент US 9960304, МПК H01L 31/052, опубликован 01.05.2018), включающий формирование множества солнечных элементов, вторичных концентраторов солнечного излучения, выполненных в виде шарообразных линз и расположенных соосно над солнечными элементами, множества линейных электродов, выполненных в виде контактной сетки, с пересекающимися электродами в центре фоточувствительной области солнечного элемента, формирование панели первичного концентратора, выполненного в виде линз Френеля, расположенных соосно над вторичными концентраторами. При этом подстройка взаиморасположения первичного концентратора, вторичного концентратора и солнечного элемента осуществляется совмещением центра линзы с пересекающимися электродами в центре фоточувствительной области солнечного элемента при получении изображения на камере со стороны принимающей поверхности первичного концентратора.

Недостатками известного способа изготовления фотоэлектрического концентраторного модуля является сложность процесса совмещения и низкое качество юстировки солнечных элементов в фокусе концентратов.

Известен способ изготовления фотоэлектрического концентраторного модуля (см. заявка US 20100236603, МПК H01L 31/054, опубликована 23.09.2010), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков признаков и принятый за прототип. Способ изготовления фотоэлектрического концентраторного модуля включает последовательное формирование по меньшей мере одного солнечного элемента на подложке с электрическими соединениями на фоточувствительной поверхности солнечного элемента, самоцентрирующейся основы для линзы с отверстиями и с электрическими соединениями, осуществляющую центрирование излучения на солнечный элемент, вторичного концентратора в форме сферической линзы, расположенного на основе для линзы напротив фоточувствительной поверхности солнечного элемента, первичного концентратора, выполненного в виде плосковыпуклой линзы, собирающего солнечное излучение на фоточувствительную поверхность солнечного элемента. При этом упомянутое формирование сферической линзы включает ее герметизацию в отверстии самоцентрирующейся основы для линзы, отжиг основы для линзы, герметизирующего уплотнителя и сферической линзы может быть выполнен при температуре в диапазоне от 150°С до 350°С. Упомянутый отжиг осуществляют в химически нейтральной среде, химически нейтральная среда является бескислородной и содержит азот и/или аргон. Самоцентрирующаяся основа для линзы может быть выполнена в форме кольца, а перед формированием вторичного концентратора в форме сферической линзы на опоре для линзы изготавливают герметизирующий уплотнитель в форме кольца вокруг опоры для линзы, при этом диаметр уплотнителя больше диаметра опоры для линзы.

Недостатками известного способа изготовления фотоэлектрического концентраторного модуля являются сложность изготовления вторичного концентратора, что ведет к снижению технологичности изготовления модуля и к увеличению его стоимости.

Задачей заявляемого технического решения является упрощение технологии изготовления вторичного концентратора, приводящее к снижению стоимости изготовления фотоэлектрического концентраторного модуля.

Поставленная задача достигается тем, что способ изготовления фотоэлектрического концентраторного модуля включает формирование по меньшей мере солнечного элемента на подложке с электрическими соединениями на фоточувствительной поверхности солнечного элемента, формирование вторичных концентраторов солнечного излучения, расположенных соосно на солнечных элементах, формирование панели первичных концентраторов, расположенных соосно над вторичными концентраторами. Новым в способе является то, что для формирования вторичных концентраторов солнечного излучения изготавливают разборную полую форму в виде правильной четырехгранной усеченной пирамиды с внутренней зеркальной поверхностью и с меньшим основанием, совпадающим по размерам с поверхностью солнечного элемента, покрывают внутреннюю поверхность полой формы слоем антиадгезионного материала, а поверхность солнечного элемента слоем адгезионного материала, устанавливают разборную полую форму меньшим основанием на поверхность солнечного элемента, заполняют полую форму жидкой смесью силиконовых компонентов, на поверхность жидкой смеси силиконовых компонентов устанавливают совпадающую по размерам с большим основанием полой формы стеклянную пластину, на фронтальную поверхность которой нанесено антиотражающее покрытие, а на тыльную поверхность нанесен слой адгезионного материала, полимеризуют смесь силиконовых компонентов при температуре, равной усредненной рабочей температуре вторичного концентратора в рабочем режиме при освещении модуля солнечным излучением, а после завершения полимеризации разбирают полую форму и отделяют детали полой формы от изготовленного вторичного концентратора.

Панель первичных концентраторов может быть сформирована в виде линз Френеля.

Жидкая смесь силиконовых компонентов может быть приготовлена из двухкомпонентного силикона марки Elastosil Solar 3210 (Wacker Chemie AG, Германия).

Полимеризацию жидкой смеси силиконовых компонентов можно проводить при температуре (40-60)°С в воздушной атмосфере.

В качестве антиадгезионного материала может быть использован анодный окисел алюминия.

В качестве адгезионного материала может быть использован двухкомпонентный силикон, изготовленный на основе полидиметилсилоксана (PDMS), либо двухкомпонентный силикон марки Sylgard 184 "DOWSIL", либо марки Wacker Elastosil RT601.

Разборная полая форма может быть использована для изготовления множества вторичных концентраторов.

Настоящий способ позволяет центрировать солнечное излучение на фоточувствительную поверхность солнечного элемента непосредственно вторичным концентратором без центрирующей основы для линзы, используемой в способе-прототипе. Центрирование осуществляют путем расположения разборной полой формы для заливки материала вторичного концентратора на поверхности солнечного элемента, высокая точность центрирования достигается за счет того, что меньшее основание формы совпадает по размерам с фоточувствительной поверхностью солнечного элемента.

Выполнение меньшего основания полой формы, совпадающим по размерам с поверхностью солнечного элемента, позволяет при заливке силиконовых компонентов одновременно проводить герметизацию фоточувствительной поверхности солнечного элемента, выполняющую защитную функцию от воздействия негативных параметров окружающей среды (влажности, пыли, ветра) и снижающую деградацию солнечного элемента.

Покрытие внутренней поверхности полой формы слоем антиадгезионного материала, препятствующего сцеплению силикона с поверхностью матрицы, упрощает отделение вторичного концентратора от формы и увеличивает качество поверхности вторичного концентратора.

Установка стеклянной пластины с антиотражающим покрытием и с размерами, равными размерам большего основания полой формы, на поверхности жидкой смеси силиконовых компонентов, заполняющей полую форму, обеспечивает механическую защиту вторичному концентратору и снижение потерь на отражение солнечного излучения.

Нанесение на внутреннюю поверхность пластины и на поверхность солнечного элемента адгезионного покрытия обеспечивает сцепление силикона с поверхностями стеклянной пластины и солнечного элемента.

Полимеризация силиконовых компонентов при температуре в диапазоне (40-60)°С в воздушной атмосфере, равной усредненной рабочей температуре концентратора в рабочем режиме при освещении модуля солнечным излучением, позволяет снизить деградацию вторичного концентратора в периоде эксплуатации и упростить технологию изготовления вторичного концентратора, по сравнению с прототипом, за счет отсутствия дорогостоящего оборудования по проведению отжига при высоких температурах в бескислородной среде.

Формирование первичного концентратора в виде линзы Френеля ведет к снижению стоимости изготовления концентратора за счет меньшего расхода материала и к увеличению ресурса за счет укорочения оптического пути в линзе, по сравнению с плосковыпуклой линзой, предлагаемой в способе-прототипе.

Настоящий способ изготовления фотоэлектрического концентраторного модуля выполняют следующим образом.

Формируют солнечные элементы на подложках с электрическими соединениями на фоточувствительной поверхности солнечных элементов. Изготавливают разборные полые формы из алюминия в виде правильной четырехгранной усеченной пирамиды с внутренней зеркальной поверхностью и с меньшим основанием, совпадающим по размерам с поверхностью солнечного элемента. Покрывают внутреннюю поверхность полых форм слоем антиадгезионного материала, например анодным окислом алюминия, а поверхность солнечных элементов слоем адгезионного материала, например двухкомпонентным силиконом, изготовленным на основе полидиметилсилоксана (PDMS). Далее устанавливают разборные полые формы меньшим основанием на поверхности солнечных элементов, и проводят заливку жидкой смеси силиконовых компонентов, например двухкомпонентного силикона марки Wacker Elastosil Solar 3210, внутрь полых форм. На поверхность жидкой смеси силиконовых компонентов устанавливают совпадающие по размерам с большими основаниями полых форм стеклянные пластины. При этом на фронтальную поверхность стеклянных пластин предварительно наносят антиотражающее покрытие, например на основе двуслойного покрытия TiOx/SiO2 (при х близком к 2), а на тыльные поверхности наносят слой адгезионного материала, например, на основе полидиметилсилоксана (PDMS). Проводят полимеризацию смеси силиконовых компонентов при температуре в диапазоне (40-60)°С в воздушной атмосфере. После завершения полимеризации разбирают полые формы и отделяют детали полых форм от изготовленных вторичных концентраторов. После завершения процесса изготовления вторичных концентраторов в форме правильных усеченных с четырьмя боковыми гранями пирамид из оптически прозрачного силикона, расположенных на фоточувствительных поверхностях солнечных элементов, и выполняющих центрирование солнечного излучения на солнечные элементы, формируют первичные концентраторы в виде линз Френеля, собирающие солнечное излучение на больших основаниях вторичных концентраторов и далее на фоточувствительной поверхности солнечных элементов.

Пример 1. Настоящий способ изготовления фотоэлектрического концентраторного модуля был выполнен следующим образом. Сформировано 32 солнечных элемента на подложках с электрическими соединениями на фоточувствительной поверхности солнечных элементов и 32 вторичных концентратора солнечного излучения настоящим способом, расположенных соосно на солнечных элементах, выполнено формирование панели первичного концентратора в виде 32 линз Френеля, расположенных соосно над вторичными концентраторами. Изготовление вторичных концентраторов выполнено в несколько стадий. Были изготовлены 32 разборные полые формы из алюминия в виде правильной четырехгранной усеченной пирамиды с внутренней зеркальной поверхностью и с меньшим основанием, совпадающим по размерам с фоточувствительной поверхностью солнечного элемента. Внутренняя поверхность полых форм была покрыта анодным окислом алюминия. Поверхность солнечных элементов была покрыта слоем адгезионного материала на основе полидиметилсилоксана (PDMS). Разборные полые формы меньшим основанием были установлены на поверхность солнечных элементов, проведена заливка жидкой смеси двухкомпонентного силикона марки Wacker Elastosil Solar 3210 внутрь полых форм. Были подготовлены стеклянные пластины, совпадающие по размерам с большим основанием полых форм. На фронтальную поверхность стеклянных пластин было нанесено двуслойное антиотражающее покрытие TiOx/SiO2 (при х, близком к 2), а на тыльную поверхность нанесен слой адгезионного материала на основе полидиметилсилоксана (PDMS). На поверхность жидкой смеси силикона были установлены упомянутые стеклянные пластины. Провели полимеризацию смеси двухкомпонентного силикона при температуре 40°С в воздушной атмосфере. Были разобраны полые формы и отделены детали полых форм от изготовленных силиконовых вторичных концентраторов. Таким образом были изготовлены 32 вторичных концентратора солнечного излучения в форме правильных усеченных с четырьмя боковыми гранями пирамид из оптически прозрачного силикона, расположенных на поверхности 32 солнечных элементов. При этом меньшее основание усеченной пирамиды вторичного концентратора было зафиксировано на фоточувствительной поверхности солнечного элемента, а большее основание собирает солнечное излучение, поступающее от первичного концентратора. Таким образом, был получен фотоэлектрический концентраторный модуль, состоящий из блока солнечных элементов с вторичными концентраторами, расположенных в 4 ряда по 8 штук.

Пример 2. Настоящий способ изготовления фотоэлектрического концентраторного модуля был выполнен следующим образом. Было сформировано 144 солнечных элемента на подложках с электрическими соединениями на фоточувствительной поверхности солнечных элементов и 144 вторичных концентратора солнечного излучения настоящим способом, расположенных соосно над солнечными элементами, выполнено формирование панели первичного концентратора в виде 144 линз Френеля, расположенных соосно над вторичными концентраторами. Изготовление вторичных концентраторов выполнялось в несколько стадий. Были изготовлены 144 разборные полые формы из алюминия в виде правильной четырехгранной усеченной пирамиды с внутренней зеркальной поверхностью и с меньшим основанием, совпадающим по размерам с фоточувствительной поверхностью солнечного элемента. Внутренняя поверхность полых форм была покрыта анодным окислом алюминия. Поверхность солнечных элементов была покрыта слоем адгезионного материала на основе Sylgard 184 "DOWSIL". Разборные полые формы меньшим основанием были установлены на поверхность солнечных элементов, проведена заливка жидкой смеси двухкомпонентного силикона марки Wacker Elastosil Solar 3210 внутрь полых форм. Были подготовлены стеклянные пластины, совпадающие по размерам с большим основанием полых форм. На фронтальную поверхность стеклянных пластин было нанесено трехслойное антиотражающее покрытие TiOx/S3N4/SiO2 (при х, близком к 2), а на тыльную поверхность был нанесен слой адгезионного материала на основе Sylgard 184 "DOWSIL". На поверхность жидкой смеси силикона были установлены упомянутые стеклянные пластины. Была проведена полимеризация смеси двухкомпонентного силикона при температуре 60°С в воздушной атмосфере. Полые формы были разобрены и отделены детали полых форм от изготовленных силиконовых вторичных концентраторов. Таким образом были изготовлены 144 вторичных концентратора солнечного излучения в форме правильных усеченных с четырьмя боковыми гранями пирамид из оптически прозрачного силикона, расположенных на поверхности 144 солнечных элементов. При этом меньшее основание усеченной пирамиды вторичного концентратора зафиксировано на фоточувствительной поверхности солнечного элемента, а большее основание собирает солнечное излучение, поступающее от первичного концентратора. Таким образом, получен фотоэлектрический концентраторный модуль, состоящий из блока солнечных элементов с вторичными концентраторами, расположенных в 12 рядов по 12 шт.

Пример 3. Настоящий способ изготовления фотоэлектрического концентраторного модуля был выполнен следующим образом. Было сформировано 128 солнечных элемента на подложках с электрическими соединениями на фоточувствительной поверхности солнечных элементов и 128 вторичных концентратора солнечного излучения, расположенных соосно над солнечными элементами, выполнено формирование панели первичного концентратора в виде 128 линз Френеля, расположенных соосно над вторичными концентраторами. Изготовление вторичных концентраторов было выполнено в несколько стадий. Были изготовлены 128 разборных полых форм из алюминия в виде правильной четырехгранной усеченной пирамиды с внутренней зеркальной поверхностью и с меньшим основанием, совпадающим по размерам с фоточувствительной поверхностью солнечного элемента. Внутренняя поверхность полых форм была покрыта анодным окислом алюминия. Поверхность солнечных элементов была покрыта слоем адгезионного материала на основе Wacker Elastosil RT601. Разборные полые формы меньшим основанием были установлены на поверхность солнечных элементов, проведена заливка жидкой смеси двухкомпонентного силикона марки Wacker Elastosil Solar 3210 внутрь полых форм. Были подготовлены стеклянные пластины, совпадающие по размерам с большим основанием полых форм. На фронтальную поверхность стеклянных пластин было нанесено антиотражающее покрытие Al2O3, а на тыльную поверхность нанесен слой адгезионного материала на основе Wacker Elastosil RT601. На поверхность жидкой смеси силикона были установлены упомянутые стеклянные пластины. Проведена полимеризация смеси двухкомпонентного силикона при температуре 50°С в воздушной атмосфере. Далее полые формы были разобраны и отделены детали полых форм от изготовленных силиконовых вторичных концентраторов. Таким образом было изготовлено 128 вторичных концентраторов солнечного излучения в форме правильных усеченных с четырьмя боковыми гранями пирамид из оптически прозрачного силикона, расположенных на поверхности 128 солнечных элементов. При этом меньшее основание усеченной пирамиды вторичного концентратора было зафиксировано на фоточувствительной поверхности солнечного элемента, а большее основание собирает солнечное излучение, поступающее от первичного концентратора. Таким образом, был получен фотоэлектрический концентраторный модуль, состоящий из блока солнечных элементов со вторичными концентраторами, расположенных в 8 рядов по 16 шт.

Настоящий способ позволяет снизить стоимость изготовления фотоэлектрического концентраторного модуля за счет упрощения технологии изготовления вторичных концентраторов.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 114.
13.01.2017
№217.015.81e0

Способ измерения магнитного поля

Изобретение относится к способам измерения магнитного поля и включает воздействие на кристалл карбида кремния гексагонального или ромбического политипа, содержащего спиновые центры с основным квадруплетным спиновым состоянием, вдоль его кристаллографической оси с симметрии сфокусированным...
Тип: Изобретение
Номер охранного документа: 0002601734
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83bb

Способ оценки качества гетероструктуры полупроводникового лазера

Изобретение относится к области контроля полупроводниковых устройств. Способ оценки качества гетероструктуры полупроводникового лазера включает воздействие на волноводный слой гетероструктуры полупроводникового лазера световым излучением, не испытывающим межзонное поглощение в его активной...
Тип: Изобретение
Номер охранного документа: 0002601537
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.91ea

Оксидный материал ловушки расплава активной зоны ядерного реактора

Группа изобретений относится к составам материалов для атомной энергетики, в частности к жертвенным материалам. Оксидный материал ловушки расплава активной зоны ядерного реактора, включающий AlO, FeO и/или FeO, первую целевую добавку в виде GdO или EuO, или SmO и вторую целевую добавку в виде...
Тип: Изобретение
Номер охранного документа: 0002605693
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9b70

Четырехпереходный солнечный элемент

Четырехпереходный солнечный элемент включает последовательно выращенные на подложке (1) из p-Ge четыре субэлемента (2), (3), (4), (5), соединенные между собой туннельными p-n переходами (6, 7, 8), метаморфный градиентный буферный слой (9) между первым (2) и вторым (3) субэлементами и контактный...
Тип: Изобретение
Номер охранного документа: 0002610225
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a56c

Оптический магнитометр

Изобретение относится к области измерения магнитных полей и касается оптического магнитометра. Магнитометр включает генератор низкой частоты, конденсатор, по меньшей мере одну катушку электромагнита, активный материал виде кристалла карбида кремния, содержащий по меньшей мере один спиновый...
Тип: Изобретение
Номер охранного документа: 0002607840
Дата охранного документа: 20.01.2017
25.08.2017
№217.015.a5d3

Способ изготовления фотоэлемента на основе gaas

Способ изготовления фотопреобразователя на основе GaAs включает выращивание методом жидкофазной эпитаксии на подложке n-GaAs базового слоя n-GaAs, легированного оловом или теллуром, толщиной 10-20 мкм и слоя p-AlGaAs, легированного цинком, при х=0,2-0,3 в начале роста и при х=0,10-0,15 в...
Тип: Изобретение
Номер охранного документа: 0002607734
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9ae

Солнечный концентраторный модуль

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8). Теплоотводящие основания (8)...
Тип: Изобретение
Номер охранного документа: 0002611693
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9ce

Система управления платформой концентраторных солнечных модулей

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую...
Тип: Изобретение
Номер охранного документа: 0002611571
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa69

Метаморфный фотопреобразователь

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий...
Тип: Изобретение
Номер охранного документа: 0002611569
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aaa3

Способ изготовления наногетероструктуры со сверхрешеткой

Изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств. Способ изготовления наногетероструктуры со сверхрешеткой включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических...
Тип: Изобретение
Номер охранного документа: 0002611692
Дата охранного документа: 28.02.2017
Показаны записи 41-50 из 63.
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.53af

Способ изготовления омических контактов фотоэлектрического преобразователя

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру AB основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку...
Тип: Изобретение
Номер охранного документа: 0002687851
Дата охранного документа: 16.05.2019
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
29.05.2019
№219.017.689a

Концентраторный солнечный элемент

Концентраторный солнечный элемент (8) выполнен в форме в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5. Он содержит подложку (3), многослойную структуру (4), сформированную на подложке (3), с центральной фоточувствительной областью (12), контактный слой...
Тип: Изобретение
Номер охранного документа: 0002407108
Дата охранного документа: 20.12.2010
09.06.2019
№219.017.7c22

Способ получения структуры многослойного фотоэлектрического преобразователя

Способ получения многослойной структуры двухпереходного фотоэлектрического преобразователя, включающий последовательное осаждение из газовой фазы на подложку p-типа GaAs тыльного потенциального барьера из триметилгаллия (TMGa), триметилалюминия (TMAl), арсина (AsH) и источника p-примеси, базы...
Тип: Изобретение
Номер охранного документа: 0002366035
Дата охранного документа: 27.08.2009
09.06.2019
№219.017.7d2a

Способ изготовления наноструктурного омического контакта фотоэлектрического преобразователя

Изобретение относится к технологии изготовления полупроводниковых приборов. Сущность изобретения: в способ изготовления наноструктурного омического контакта проводят предварительную очистку поверхности GaSb р-типа проводимости ионно-плазменным травлением на глубину 5-30 нм с последующим...
Тип: Изобретение
Номер охранного документа: 0002426194
Дата охранного документа: 10.08.2011
09.06.2019
№219.017.7d72

Способ формирования контакта для наногетероструктуры фотоэлектрического преобразователя на основе арсенида галлия

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, и может использоваться в технологиях по изготовлению омических контактных систем к фотоэлектрическим преобразователям (ФЭП) с высокими эксплуатационными характеристиками, и, в частности, изобретение...
Тип: Изобретение
Номер охранного документа: 0002428766
Дата охранного документа: 10.09.2011
03.08.2019
№219.017.bbdf

Оптоволоконный фотоэлектрический преобразователь лазерного излучения

Изобретение относится к оптоэлектронике и фотоэнергетике и может быть использовано для создания оптоволоконных систем передачи энергии по лазерному лучу. Заявленный оптоволоконный фотоэлектрический преобразователь лазерного излучения включает оптически последовательно соединенные лазер,...
Тип: Изобретение
Номер охранного документа: 0002696355
Дата охранного документа: 01.08.2019
+ добавить свой РИД