×
16.06.2023
223.018.7c41

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации. Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей основных деталей двигателя по ресурсу, за счет применения усовершенствованного механизма подсчета накопленной поврежденности. Достижение предельно допустимых значений накопленной поврежденности основных деталей при использовании заявленного способа происходит по истечению большего периода эксплуатации по сравнению с прототипом. Таким образом, использование заявленного способа снижает стоимость жизненного цикла двигателя. Указанный технический результат достигается тем, что в заявленном способе эксплуатации авиационного газотурбинного двигателя по его техническому состоянию, заключающемся в сравнении фактической наработки двигателя и накопленной поврежденности основных деталей двигателя с их предельно допустимыми значениями, определяемыми по результатам ресурсных испытаний на наземном стенде, и последующим определением остаточного ресурса двигателя и его основных деталей по результатам этого сравнения, при этом накопленную поврежденность основных деталей двигателя определяют как сумму произведений количества выделенных за полет типовых циклов нагружения, определяемых по диапазонам изменения циклической нагруженности основных деталей двигателя, в свою очередь определяемой по характерным параметрам работы двигателя, на соответствующую им единичную повреждаемость, согласно заявленному способу весь диапазон эксплуатации авиационного газотурбинного двигателя в координатах параметров полной температуры Т и полного давления Р на входе в двигатель делят на зоны, определяют для каждой основной детали и каждого типового цикла нагружения максимальную в каждой зоне единичную повреждаемость, далее на основе анализа эксплуатационных данных летательного аппарата определяют вероятность реализации каждого типового цикла нагружения в каждой выделенной зоне от общего количества циклов данного типа, далее определяют средневзвешенную единичную повреждаемость для каждого типового цикла каждой основной детали по всему диапазону эксплуатации двигателя, далее при определении накопленной поврежденности используют средневзвешенную единичную повреждаемость. 2 ил., 2 табл.

Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации.

В качестве прототипа выбран известный способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию / RU №2 236 671, МПК G01M15/00, опубликовано: 29.09.2004 /, который предусматривает сравнение фактической наработки двигателя и параметра технического состояния деталей двигателя во время эксплуатации с их предельно допустимыми значениями и последующее определение остаточного ресурса двигателя и его деталей по результатам этого сравнения. При этом для основных деталей, т.е. для деталей, разрушение которых может привести к отказу с опасными последствиями, в качестве параметра технического состояния выбирают их накопленную поврежденность. Определение накопленной поврежденности основных деталей осуществляют с учетом их наработки на каждом конкретном режиме работы двигателя, а предельно допустимые значения поврежденности основных деталей определяют при работе двигателя на наземных стендах на назначенных режимах.

Недостатком известного способа является низкая точность определения остаточного ресурса двигателя вследствие необъективности механизма подсчета накопленной поврежденности, не учитывающего влияния полетных условий на единичную повреждаемость циклов нагружения. В известном способе при определении накопленной поврежденности каждой основой детали используют единственное значение единичной повреждаемости для каждого цикла нагружения, определенное при максимальных условиях нагружения всего диапазона эксплуатации. Однако, как показывает практика, около 80% эксплуатации двигателей высокоманевренного летательного аппарата осуществляется на дозвуковых скоростях и высотах до 10 километров, при которых нагруженность основных деталей двигателя значительно ниже максимальной. [Гогаев Г.П., Немцев Д.В. Исследование влияния полетных условий на повреждаемость диска турбины высокого давления высокоманевренного летательного аппарата. Вестник Московского авиационного института. 2019 г.; №т.26 №1; стр. 134-142]. Таким образом, использование указанного механизма подсчета приводит к неполному использованию потенциальных возможностей основных деталей двигателя по ресурсу и, как следствие, к увеличению стоимости жизненного цикла двигателя, за счет замены не исчерпавших ресурс основных деталей двигателя при ремонте.

Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей основных деталей двигателя по ресурсу, за счет применения усовершенствованного механизма подсчета накопленной поврежденности. Достижение предельно допустимых значений накопленной поврежденности основных деталей при использовании заявленного способа происходит по истечению большего периода эксплуатации по сравнению с прототипом. Таким образом, использование заявленного способа снижает стоимость жизненного цикла двигателя.

Указанный технический результат достигается тем, что в заявленном способе эксплуатации авиационного газотурбинного двигателя по его техническому состоянию, заключающемся в сравнении фактической наработки двигателя и накопленной поврежденности основных деталей двигателя с их предельно допустимыми значениями, определяемыми по результатам ресурсных испытаний на наземном стенде, и последующим определением остаточного ресурса двигателя и его основных деталей по результатам этого сравнения, при этом накопленную поврежденность основных деталей двигателя определяют как сумму произведений количества выделенных за полет типовых циклов нагружения, определяемых по диапазонам изменения циклической нагруженности основных деталей двигателя, в свою очередь определяемой по характерным параметрам работы двигателя, на соответствующую им единичную повреждаемость, согласно заявленному способу весь диапазон эксплуатации авиационного газотурбинного двигателя в координатах параметров полной температуры Т*вх и полного давления Р*вх на входе в двигатель делят на зоны, определяют для каждой основной детали и каждого типового цикла нагружения максимальную в каждой зоне единичную повреждаемость, далее на основе анализа эксплуатационных данных летательного аппарата определяют вероятность реализации каждого типового цикла нагружения в каждой выделенной зоне от общего количества циклов данного типа, далее определяют средневзвешенную единичную повреждаемость для каждого типового цикла каждой основной детали по всему диапазону эксплуатации двигателя, далее при определении накопленной поврежденности используют средневзвешенную единичную повреждаемость.

Разделение диапазона эксплуатации авиационного газотурбинного двигателя на зоны в координатах полной температуры Т*вх и полного давления Р*вх на входе в двигатель, и определение для каждой выделенной зоны максимальной единичной повреждаемости для каждой основной детали и каждого типового цикла нагружения позволяет учитывать в механизме подсчета накопленной поврежденности различные значения единичной повреждаемости. Определение вероятности реализации каждого типового цикла нагружения в каждой выделенной зоне от общего количества циклов данного типа на основе эксплуатационных данных летательного аппарата позволяет определить средневзвешенную единичную повреждаемость, в свою очередь использование средневзвешенной единичной повреждаемости в механизме подсчета накопленной поврежденности позволяет определять остаточный ресурс двигателя с учетом наиболее вероятных полетных условий для каждого типового цикла нагружения.

Заявленный способ осуществляется следующим образом, в процессе эксплуатации сравнивают фактическую наработку двигателя и накопленную поврежденность его основных деталей с их предельно допустимыми значениями, определяемыми по результатам ресурсных испытаний на наземном стенде. Программа этих испытаний формируется разработчиком двигателя с учетом технических требований к двигателю и предусматривает выполнение определенного количества циклов нагружения и время наработки на назначенных режимах, что определяет предельные значения фактической наработки и накопленной поврежденности.

На этапе проектирования, доводки и эксплуатации двигателя, с целью упрощения учета многообразия режимов его работы, проводят схематизацию нагружения. За основной характерный параметр работы двигателя, определяющий режим нагружения, принимают частоту вращения ротора. Для схематизации нагружения двигателя весь диапазон изменения его работы по частоте вращения разделяют на ряд назначенных режимов и определяют диапазоны значений частот вращения соответствующих им. Количество назначенных режимов работы двигателя и соответственно типовых циклов нагружения могут варьировать и определяют с учетом технических требований к двигателю, его системы управления, влияния изменения частоты вращения ротора на выработку циклической долговечности основных деталей двигателя, а также назначения летательного аппарата, в составе которого данные двигатели применяются.

На примере выделения в диапазоне изменения работы двигателя по частоте вращения назначенных режимов: МГ - малый газ, КР - крейсерский режим, МАХ - максимальный режим, - выделяют следующие типовые циклы нагружения:

N1 - соответствует изменению частоты вращения n0 - nМАХ - n0;

N2 - соответствует изменению частоты вращения nМГ - nМАХ - nМГ;

N3 - соответствует изменению частоты вращения nКР - nМАХ - nКР,

где n0 - частота вращения, равная нулю (двигатель выключен);

nМГ - диапазон частот вращения на режиме малого газа;

nКР - диапазон частот вращения на крейсерском режиме;

nМАХ - диапазон частот вращения на максимальном режиме.

Контроль фактической наработки в эксплуатации осуществляют путем определения в каждом полете или наземной работе длительности наработки на каждом из назначенных режимов работы двигателя. Полученные значения суммируют со значениями, накопленными на соответствующих режимах за предыдущий период эксплуатации, далее суммарные значения сравнивают с предельно допустимыми для каждого из режимов, определенными по итогам ресурсных испытаний на наземном стенде.

Для подсчета накопленной поврежденности на этапе проектирования, доводки и эксплуатации авиационного газотурбинного двигателя весь диапазон его эксплуатации делят на зоны. Диапазон эксплуатации определяют в координатах параметров, характеризующих полетные условия. Обычно полетные условия характеризуются значениями скорости (число Маха [М]) и высоты полета [Н] (фиг. 1). В заявленном способе в качестве параметров, характеризующих полетные условия используют полную температуру [Т*вх] и полное давление [Р*вх] на входе в двигатель. При различных сочетаниях параметров [М] и [Н] параметры на входе в двигатель [Т*вх] и [Р*вх] могут быть сходными, кроме того [Т*вх] и [Р*вх] - классические возмущающие воздействия теории систем управления авиационных силовых установок, которые совместно с заданным режимом работы двигателя однозначно определяют условия термомеханического нагружения узлов и деталей.

Таким образом, становится возможным группировать различные условия по значениям параметров [М] и [Н], обладающие сходными значениями параметров [Т*вх] и [Р*вх] на входе в двигатель. Параметры [Т*вх] и [Р*вх] измеряют непосредственно на двигателе или рассчитывают по замеряемым непосредственно на двигателе параметрам.

Пример возможного разделения диапазона эксплуатации двигателя на зоны для цикла нагружения N1 в координатах параметров [Т*вх] и [Р*вх] представлен на фиг. 2.

После определения типовых циклов нагружения и разделения диапазона эксплуатации двигателя в координатах параметров [Т*вх] и [Р*вх] на зоны проводят расчеты параметров теплового и напряженно-деформированного состояния всех основных деталей двигателя. На основе проведенных расчетов определяют для каждой основной детали и каждого типа цикла нагружения во всех выделенных зонах полетных условий значение количества циклов до разрушения Np, обратная величина которой является единичной повреждаемостью П:

где Пkij - единичная повреждаемость;

Npkij - расчетное число циклов до разрушения;

i - типовой цикл (N1, N2, N3 и т.д.);

j - рассматриваемая зона (I, II, III, и т.д.);

k - рассматриваемая основная деталь (диск компрессора, диск турбины, корпус камеры сгорания и т.д.).

Единичная повреждаемость основной детали [Пkij] - это повреждаемость за один цикл нагружения. Количество циклов до разрушения вычисляют по известным формулам, например эмпирической формуле Мэнсона, или определяют экспериментальными методами.

В силу отсутствия экспериментальных кривых малоцикловой усталости для большинства авиационных материалов, широкое применение при определении количества циклов до разрушения получила модифицированная формула Мэнсона [Демьянушко И.В., Биргер И.А., «Расчет на прочность вращающихся дисков», - М.: Машиностроение, 1978 г., 135 с., формула 4.38]:

где Δε - размах упругопластических деформаций;

Np - число циклов до разрушения;

σm - среднее напряжение цикла;

Е - модуль упругости при заданной температуре;

ψ - относительное сужение образца при одноосном разрыве;

σв - предел прочности.

При определении количества циклов нагружения до разрушения и соответственно единичных повреждаемостей для каждой выделенной зоны диапазона эксплуатации двигателя проводят расчеты при максимальных значениях параметров [Т*вх] и [Р*вх] выделенной зоны.

В результате проведения всех необходимых расчетов для каждой основной детали формируют матрицу единичных повреждаемостей всех типовых циклов нагружения в каждой зоне диапазона эксплуатации двигателя. Пример матрицы представлен в таблице 1.

Далее проводят анализ серийной эксплуатации летательного аппарата и определяют вероятность реализации каждого типового цикла нагружения в каждой выделенной зоне, как долю циклов в рассматриваемой зоне от общего количества циклов данного типа:

где Pkij - вероятность реализации циклов данного типа в зоне;

Mkij - количество циклов данного типа в зоне;

Σ Mkij - суммарное количество циклов данного типа (во всех зонах);

i - типовой цикл (N1, N2, N3 и т.д.);

j - рассматриваемая зона (1, 2, 3, и т.д.);

k - рассматриваемая ОД (диск компрессора, диск турбины, корпус камеры сгорания и т.д.).

В качестве исходной информации используются данные бортовых накопителей. При отсутствии данных серийной эксплуатации для рассматриваемого летательного аппарата используются данные двигателя и/или ЛА схожего назначения. Для определения вероятностей реализации циклов нагружения рекомендуется использовать программу ЭксКон v. 1.0 [Программа ЭВМ РФ №2018665849, от 11.12.2018 г.] или ее последующие версии, позволяющие в автоматизированном режиме выполнять анализ реализации полетных условий в эксплуатации.

В результате формируют матрицу вероятностей реализации типовых циклов нагружения основных деталей в выделенных зонах диапазона эксплуатации. Пример матрицы представлен в таблице 2.

Далее определяют средневзвешенную единичную повреждаемость для каждого типа цикла каждой основной детали:

где - средневзвешенная единичная повреждаемость;

Пkij - единичная повреждаемость;

Pkij - вероятность реализации;

i - типовой цикл (N1, N2, N3 и т.д.);

j - рассматриваемая зона (1, 2, 3, и т.д.);

k - рассматриваемая ОД (диск компрессора, диск турбины, корпус камеры сгорания и т.д.).

В эксплуатации для контроля достижения предельных значений накопленной поврежденности, разрабатывают алгоритмы обработки регистрируемой полетной информации, позволяющие выделять типовые циклы нагружения. В основе указанных алгоритмов лежит функция изменения частоты оборотов двигателя во времени. (Используют любой из известных методов схематизации случайных процессов (ГОСТ 25.101-83).

Накопленную поврежденность каждой основной детали определяют как сумму произведений количества выделенных за полет циклов нагружения каждого типа на средневзвешенную единичную повреждаемость соответствующего цикла:

где ПΣ k - накопленная поврежденность;

Mki - количество циклов за полет;

- средневзвешенная единичная повреждаемость;

i - типовой цикл (N1, N2, N3 и т.д.);

k - рассматриваемая основная деталь (диск компрессора, диск турбины, корпус камеры сгорания и т.д.).

Затем значение накопленной за полет поврежденности каждой основной детали суммируют с поврежденностью соответствующей основной детали, накопленной за предыдущий период эксплуатации, и сравнивают с предельными значениями накопленной поврежденности, определяемыми по результатам ресурсных испытаний на наземном стенде.

На основе оценки результатов сравнения фактической наработки и накопленной поврежденности с их предельно допустимыми значениями принимают решение о возможности дальнейшей эксплуатации. При достижении предельных значений фактической наработки двигателя или накопленной поврежденности какой-либо основной детали двигателя, формируется предупреждающее информационное сообщение о необходимости прекращения эксплуатации.

Определение накопленной поврежденности за полет и за весь период эксплуатации осуществляется к моменту останова двигателя.

Как показывает опыт, часто отстранение двигателя от эксплуатации происходит по параметру накопленной поврежденности его основных деталей, таким образом новый подход к подсчету накопленной поврежденности основных деталей позволит увеличить время эксплуатации двигателя «на крыле», тем самым снижая стоимость жизненного цикла изделия.

Изобретение проиллюстрировано следующими чертежами:

На фиг. 1 показан диапазон эксплуатации двигателя в координатах [М] и [Н].

На фиг. 2 показан пример возможного разделения диапазона эксплуатации двигателя на зоны для цикла нагружения N1 в координатах параметров [Т*вх] и [Р*вх].

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию, заключающийся в сравнении фактической наработки двигателя и накопленной поврежденности основных деталей двигателя с их предельно допустимыми значениями, определяемыми по результатам ресурсных испытаний на наземном стенде, и последующим определением остаточного ресурса двигателя и его основных деталей по результатам этого сравнения, при этом накопленную поврежденность основных деталей двигателя определяют как сумму произведений количества выделенных за полет типовых циклов нагружения, определяемых по диапазонам изменения циклической нагруженности основных деталей двигателя, в свою очередь определяемой по характерным параметрам работы двигателя, на соответствующую им единичную повреждаемость, отличающийся тем, что весь диапазон эксплуатации авиационного газотурбинного двигателя в координатах параметров полной температуры Т и полного давления Р на входе в двигатель делят на зоны, определяют для каждой основной детали и каждого типового цикла нагружения максимальную в каждой зоне единичную повреждаемость, далее на основе анализа эксплуатационных данных летательного аппарата определяют вероятность реализации каждого типового цикла нагружения в каждой выделенной зоне от общего количества циклов данного типа, далее определяют средневзвешенную единичную повреждаемость для каждого типового цикла каждой основной детали по всему диапазону эксплуатации двигателя, далее при определении накопленной поврежденности используют средневзвешенную единичную повреждаемость.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 110.
24.11.2019
№219.017.e626

Стенд для комплексных испытаний двигательных и самолетных агрегатов газотурбинного двигателя

Изобретение относится к машиностроению, в том числе к газотурбиностроению, а именно к испытательной технике, в частности к стендам полунатурного моделирования испытаний агрегатов и систем, и может быть использовано при ресурсных испытаниях с имитацией эксплуатационных режимов нагружения...
Тип: Изобретение
Номер охранного документа: 0002706829
Дата охранного документа: 21.11.2019
22.12.2019
№219.017.f09f

Система суфлирования воздуха в авиационном газотурбинном двигателе

Изобретение относится к авиадвигателестроению и касается устройства системы суфлирования воздуха авиационного газотурбинного двигателя (далее ГТД). Задачей изобретения является снижение расхода масла в ГТД за счет рациональной организации подвода воздуха и отвода масла от суфлера. Указанная...
Тип: Изобретение
Номер охранного документа: 0002709751
Дата охранного документа: 19.12.2019
22.12.2019
№219.017.f0ea

Способ изготовления высокоточной заготовки из порошка титанового сплава

Изобретение относится к изготовлению высокоточной заготовки из порошка титанового сплава. Способ включает послойное выращивание заготовки на установке прямого лазерного выращивания с использованием данных 3D-модели заготовки в программном обеспечении или внесенных оператором данных программы...
Тип: Изобретение
Номер охранного документа: 0002709694
Дата охранного документа: 19.12.2019
17.01.2020
№220.017.f663

Способ сигнализации наличия горения в форсажной камере воздушно-реактивного двигателя

Изобретение относится к измерительной технике, и может быть использовано, например, для сигнализации наличия горения в форсажной камере сгорания воздушно-реактивного двигателя. Способ сигнализации наличия горения в форсажной камере сгорания воздушно-реактивного двигателя, включающий регистрацию...
Тип: Изобретение
Номер охранного документа: 0002711186
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f6f2

Система управления положением направляющих аппаратов компрессора газотурбинного двигателя

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для регулирования положения направляющих аппаратов компрессора газотурбинного двигателя (ГТД). Техническим результатом настоящего изобретения является разработка системы управления положением...
Тип: Изобретение
Номер охранного документа: 0002711187
Дата охранного документа: 15.01.2020
01.02.2020
№220.017.fc8d

Датчик ионизационный сигнализатора пламени

Изобретение относится к конструкции ионизационных датчиков и применяется в турбореактивных двигателях для сигнализации розжига форсажной камеры. Датчик ионизационный сигнализатора пламени содержит центральный электрод ионизации с внутренним охлаждающим каналом, а также входным и выходным...
Тип: Изобретение
Номер охранного документа: 0002712532
Дата охранного документа: 29.01.2020
05.02.2020
№220.017.fdc7

Способ формирования размеров светового пятна на динамическом объекте и устройство для его осуществления

Изобретение относится к квантовой электронике, конкретно к способам формирования световых пятен от излучения концентрических излучателей, и может быть использовано при создании технологических устройств, в частности, интегрированных в конструкцию газотурбинного двигателя, для адаптивного...
Тип: Изобретение
Номер охранного документа: 0002713128
Дата охранного документа: 03.02.2020
06.03.2020
№220.018.0989

Способ закрепления тензорезистора на поверхности детали

Изобретение относится к измерительной технике, а именно к способам монтажа тензорезисторов на объектах детали, которые имеют кривизну и сложную геометрическую форму, и может быть использовано при испытаниях высоконагруженных материалов и конструкций, в частности лопаток газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002715890
Дата охранного документа: 04.03.2020
25.04.2020
№220.018.18b5

Устройство для транспортировки и монтажа газотурбинного двигателя

Изобретение относится к технике испытаний авиационных газотурбинных двигателей в стендовых условиях и может быть использовано при транспортировке и монтаже технологического оборудования в условиях эксплуатации, в частности при ремонте двигателя. Устройство для транспортировки газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002720056
Дата охранного документа: 23.04.2020
25.04.2020
№220.018.18b8

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФКС). Техническим результатом настоящего изобретения является...
Тип: Изобретение
Номер охранного документа: 0002720059
Дата охранного документа: 23.04.2020
Показаны записи 1-4 из 4.
09.11.2018
№218.016.9b59

Промежуточный корпус компрессора двухконтурного турбореактивного двигателя

Изобретение относится к области турбомашиностроения, а именно к элементам конструкции промежуточных корпусов газотурбинных двигателей. Указанный технический результат достигается тем, что промежуточный корпус турбомашины с разделителем потока, содержащий силовые стойки, размещенные между...
Тип: Изобретение
Номер охранного документа: 0002672015
Дата охранного документа: 08.11.2018
09.08.2019
№219.017.bd1d

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации. Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей...
Тип: Изобретение
Номер охранного документа: 0002696523
Дата охранного документа: 02.08.2019
24.01.2020
№220.017.f92c

Устройство отклонения вектора реверсированной тяги турбореактивного двигателя

Изобретение относится к выходным устройствам газотурбинных двигателей авиационного применения, предназначенным для отклонения вектора тяги турбореактивного двигателя летательного аппарата, используемого в полете совместно с управляющими поверхностями летательного аппарата. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002711743
Дата охранного документа: 21.01.2020
03.06.2023
№223.018.7671

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области эксплуатации и диагностики авиационных газотурбинных двигателей. Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию включает определение накопленной повреждаемости каждой основной детали двигателя с учетом режимов работы...
Тип: Изобретение
Номер охранного документа: 0002796563
Дата охранного документа: 25.05.2023
+ добавить свой РИД