×
16.06.2023
223.018.7c2a

Результат интеллектуальной деятельности: ЛЮМИНЕСЦИРУЮЩЕЕ СТЕКЛО

Вид РИД

Изобретение

№ охранного документа
0002744539
Дата охранного документа
11.03.2021
Аннотация: Люминесцирующее стекло относится к материалам квантовой электроники, оптики и может быть использовано в устройствах для отображения информации, электронно-лучевых приборах, индикаторной технике, светодиодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах, визуализаторов альфа и бета излучения. Люминесцирующее стекло включает BiO, BO, SiO, AlO, BaO; SrO; ZnO и EuO и AgO при следующем соотношении компонентов, мас. %: BiO 30-35; BO 20-23; SiO 15-18; EuO 7-17; AlO 3-6; BaO 4-6; SrO 4-6; ZnO 4-7 и AgO 0,001-0,1. Люминесцирующее стекло характеризуется стабильной и высокой интенсивностью люминесценции ионов Eu на длине волны электронного перехода D→F. 1 табл. 3 пр.

Изобретение относится к материалам квантовой электроники, оптики и может быть использовано в устройствах для отображения информации, в электронно-лучевых приборах, индикаторной технике, светодиодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах, визуализаторов альфа- и бета-излучения.

Известно люминесцирующее стекло (см. патент RU 2574223, МПК С03С 4/12, опубликован 10.02.2016), содержащее в мол. %: SiO2 35,0-42,0; PbO 15,0-20,0; PbF2 27,5-32,0; CdF2 8,0-15,0; Eu2O3 0,5-1,5 и YbF3 1,0-2,5.

Известное люминесцирующее стекло характеризуется интенсивной ап-конверсионной люминесценцией, обусловленной переходом 5D07F2 иона Eu3+, и обладает свойством преобразовывать инфракрасное лазерное излучение в видимое насыщенное оранжево-красное в области длины волны λ-612 нм.

Недостатком известного люминесцирующего стекла является низкая стабильность люминесценции Ей вследствие содержания фторидов. Кроме того, стекла содержат токсичные соединения свинца PbO и PbF2 и кадмия CdF2.

Известно люминесцирующее стекло (см. патент RU 2703039, МПК С03С 4/12, опубликован 15.10.2019), содержащее (мас. %): Bi2O3 36-х; B2O3 20; CaF2 10; SiO2 8; Eu2O3 х; ZnO - остальное (3≤х≤7).

Недостатком стекла является невысокая интенсивность люминесценции Eu3+, так как содержит малое количество сооактиваторов, что снижает растворимость Eu3. Кроме того стекло включает в себя соединение CaF2, что уменьшает радиационную стойкость материала.

Известно люминесцирующее стекло (см. заявка US 2005181927, МПК С03С 8/24, опубликована 18.08.2005), совпадающее с настоящим решением по наибольшему числу существенных признаков и принятое за прототип. Стекло - прототип содержит (мас. %): Bi2O3 55-90; ZnO 4-22; B2O3 3-15; SiO2 0,5-14; Al2O3 0-4; ВаО 0-12; SrO 0-12 и Eu2O3 0,1-10.

Недостатком известного материала является невысокая интенсивность люминесценции ионов Eu3+ на длине волны 612 нм, соответствующая электронному переходу 5D07F2. Большое содержание висмута в стекле (более 55 мас. %) приводит к сильному поглощению материала в видимом диапазоне спектра и уменьшает интенсивность люминесценции Eu. Кроме того, стекла могут дополнительно содержать оксиды щелочных металлов (Li2O, Na2O и K2O), что приводит к тушению люминесценции активатора при возбуждении высокоэнергетическим излучением (альфа или бета излучение).

Задачей настоящего технического решения является создание люминесцирующего стекла, характеризующегося стабильной и высокой интенсивностью люминесценции ионов Eu3+ на длине волны 615 нм электронного перехода 5D07F2.

Поставленная задача достигается тем, что люминесцирующее стекло включает Bi2O3, B2O3, SiO2, Al2O3, BaO, SrO, ZnO; Eu2O3 и дополнительно содержит Ag2O при следующем соотношении компонентов в мас. %: Bi2O3 30-35; B2O3 20-23; SiO2 15-18; Eu2O3 7-17; Al2O3 3-6; BaO 4-6; SrO 4-6; ZnO 4-7 и Ag2O 0,001-0,1.

Соотношение настоящих составов обусловлено областью фазовой однородности люминесцентного материала, образующегося в системе SiO2 - B2O3 - Bi2O3 - Al2O3 - BaO - SrO - ZnO - Eu2O3 - Ag2O. Уменьшение содержания SiO2 ниже 14 мас. % и B2O3 ниже 20 мас. % приводит к уменьшению однородности люминесцентного материала и ухудшает его оптическое качество. Уменьшение Bi2O3, и ZnO ниже соответственно 30 и 4 нецелесообразно из-за увеличения температуры синтеза и уменьшения плотности стекла. Увеличение концентрации Bi2O3 выше 35 уменьшает прозрачность стекла в видимом спектральном диапазоне. Концентрация ZnO выше заявленных нецелесообразна, так как приведет к снижению остальных компонентов шихты. Уменьшение содержания Al2O3 ниже заявляемого приводит к уменьшению химической стойкости. Увеличение содержания Al2O3 выше заявляемого приводит к увеличению температуры спекания шихты. Указанное содержание SrO и ВаО обусловлено улучшением оптических свойств и растворимости Eu в стекле.

Увеличение концентрации Ag2O, выше заявляемого, приводит к сегрегации серебра и уменьшению молекулярных кластеров серебра, что приводит к уменьшению интенсивности люминесценции активатора. Уменьшение концентрации Ag2O ниже заявляемого нецелесообразно, т.к. это также приводит к уменьшению молекулярных кластеров серебра. Содержание Eu2O3 определяется оптимальным содержанием ионов Eu3+ в стекле, при котором не происходит концентрационного тушения и данные стекла обладают максимальным выходом люминесценции.

Введение Ag2O в стекло в указанных концентрациях, не только позволяет увеличить плотность материала, но и увеличить интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия, за счет передачи возбуждения (сенсибилизации) молекулярными кластерами серебра ионам европия.

Настоящее люминесцирующее стекло поясняется чертежом, где в таблице приведены результаты измерения интенсивности люминесценции люминесцирующего стекла на длине волны электронного перехода 5D07F2.

Пример 1. Шихту состава в мас. %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 7; Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), тщательно перемешивали и перетирали в фарфоровой ступке. В дальнейшем производили высушивание со ступенчатым нагревом (150°С, 250°С, 500°C с выдержкой 20 мин) и промежуточным перемешиванием в ступке. Скорость нагрева составляла от 6 до 7 град/мин. Варку шихты производили в корундовом тигле в окислительных условиях в муфельной электрической печи с нагревом до 1200°C с выдержкой в течение 40 минут. Полученный расплав оставляли остывать в печи до комнатной температуры. Стекла с видимыми внутренними напряжениями подвергали отжигу при 350°С для снятия напряжений. Затем стекла освобождали от тигля, отбирали оптически однородные фрагменты. Из них изготавливали плоскопараллельные образцы размером ~(5×5) мм2 и толщиной (2,5-4) мм, поверхности которых шлифовали и полировали. При исследовании люминесценции стекла в качестве источника возбуждения применяли электронный пучок катодолюминесцентной установки. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Измерение интенсивности люминесценции проводили на длине волны 615 нм электронного перехода 5D07F2 иона европия. Полученное люминесцирующее стекло имело интенсивность на длине электронного перехода 5D07F2 иона европия в 1,3 раза выше, чем стекло-прототип, что показано на чертеже в таблице.

Пример 2. Шихту состава в масс %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 10; - Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), готовили по технологии, описанной в примере 1. Полученное люминесцирующее стекло имеет интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия в 1,4 раз выше, чем прототип. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Результаты измерений интенсивности люминесценции Eu3+ приведены на чертеже в таблице.

Пример 3. Шихту состава в мас. %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 10; Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), готовили по технологии, описанной в примере 1. Полученное люминесцирующее стекло имеет интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия в 1,2 раз выше, чем прототип. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Результаты измерений интенсивности люминесценции Eu3+ приведены на чертеже в таблице.

Как следует из полученных, данных техническим результатом изобретения является повышение интенсивности люминесценции ионов европия на длине волны электронного перехода 5D07F2. В интервале 7-17 мас. % Eu3+ интенсивность свечения люминесцирующего стекла состава в мас. %: Bi2O3 30-35; B2O3 20-23; SiO2 15-18; Eu2O3 7-17; Al2O3 3-5; ВаО 4-6; SrO 4-6; ZnO 4-7 и Ag2O 0,01 превышает интенсивность прототипа.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 114.
27.02.2016
№216.014.cf0a

Способ формирования многослойного омического контакта к прибору на основе арсенида галлия

Изобретение относится к технологии полупроводниковых приборов. Способ формирования многослойного омического контакта включает предварительное формирование фотолитографией маски из фоторезиста на поверхности арсенида галлия электронной проводимости, очистку свободной от маски поверхности...
Тип: Изобретение
Номер охранного документа: 0002575977
Дата охранного документа: 27.02.2016
10.04.2016
№216.015.2ccb

Система позиционирования и слежения за солнцем концентраторной фотоэнергоустановки

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий...
Тип: Изобретение
Номер охранного документа: 0002579169
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4875

Инжекционный лазер

Использование: для полупроводниковых инжекционных лазеров. Сущность изобретения заключается в том, что инжекционный лазер на основе полупроводниковой гетероструктуры раздельного ограничения, включающей многомодовый волновод, первый и второй широкозонные ограничительные слои, являющиеся...
Тип: Изобретение
Номер охранного документа: 0002587097
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4aec

Интегрально-оптический элемент

Интегрально-оптический элемент, включающий подложку из кристалла ниобата лития, встроенный в подложку оптический волновод, образованный термической диффузией титана из титановой полоски шириной 3-7 мкм и толщиной 60-80 нм, нанесенной на поверхность подложки. Глубина оптического волновода равна...
Тип: Изобретение
Номер охранного документа: 0002594987
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.5b6b

Способ определения тока в канале электрического пробоя диэлектрика

Изобретение относится к области физики электрического пробоя и может быть использовано для определения амплитуды и длительности импульса тока электрического пробоя в диэлектриках. Технический результат: повышение точности определения тока в канале электрического пробоя диэлектриков. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002589509
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6721

Устройство для определения положения объекта

Использование: для определения положения объекта с помощью источника модулированного оптического сигнала. Сущность изобретения заключается в том, что устройство содержит источник модулированного оптического сигнала, фотодетектор, оптически связанный с ним через устройство формирования сигнала,...
Тип: Изобретение
Номер охранного документа: 0002591302
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6cbe

Суперконденсатор

Изобретение относится к области микро- и наноэлектроники и может найти применение в приборостроении, энергетике, электронике, в приборах мобильной связи в качестве слаботочного источника питания. Предложенный суперконденсатор включает отрицательный электрод (4) и положительный электрод (5),...
Тип: Изобретение
Номер охранного документа: 0002597224
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7a01

Четырехпереходный солнечный элемент

Четырехпереходный солнечный элемент включает последовательно выращенные на подложке (1) из p-Ge четыре субэлемента (2, 3, 4, 5), согласованные по постоянной решетки с подложкой (1) из p-Ge и соединенные между собой туннельными р-n-переходами (6, 7, 8), и контактный слой (9), при этом первый...
Тип: Изобретение
Номер охранного документа: 0002599064
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7ab0

Способ получения светопоглощающей кремниевой структуры

Изобретение относится к области солнечных фотоэлектрических преобразователей на основе монокристаллического кремния. Способ получения светопоглощающей кремниевой структуры включает нанесение на поверхность образца из монокристаллического кремния слоя ванадия толщиной от 50 нм до 80 нм,...
Тип: Изобретение
Номер охранного документа: 0002600076
Дата охранного документа: 20.10.2016
+ добавить свой РИД