×
16.06.2023
223.018.7b54

Результат интеллектуальной деятельности: Фундамент стаканного типа под колонну

Вид РИД

Изобретение

Аннотация: Изобретение относится к области строительства железобетонного фундамента стаканного типа под сборную колонну здания. Фундамент под колонну включает железобетонный подколонник стаканного типа, армированный пространственным каркасом, и сопряженную с ним фундаментную плиту. Подколонник выполнен из типового сборного железобетонного кольца, установленного в качестве несъемной опалубки на фундаментную плиту и заполненного бетоном замоноличивания с предварительной установкой по его центру опорного столбика, соединенного с фундаментной плитой. Пространственный каркас расположен между опорным столбиком и кольцом, а высота опорного столбика определена по уравнению

Изобретение относится к области строительства и касается проектирования и возведения сборно-монолитного железобетонного фундамента стаканного типа под колонну.

Известен сборно-монолитный фундамент под колонну, включающий армированную фундаментную плиту и подколонник со стаканной частью для колонны с заполненной бетоном полостью / А.с. SU 863774, Е02Д 27/42. Сборно-монолитный фундамент под колонну / Б.Х. Дин, заяв. 23.01.78, опубл. 15.09.81, Бюл. №34 [1].

Недостаток известного технического решения заключается в большом расходе материалов для устройства железобетонного фундамента, длительности срока его возведения, трудоемкости изготовления железобетонного фундамента в следствие применения разборно-переставной опалубки; в сложности и многооперационности технологии соединения железобетонного подколонника с армированной фундаментной плитой.

Наиболее близким техническим решением к предлагаемому является конструкция отдельного фундамента, сопрягаемого со сборной колонной прямоугольного сечения, которая заделана в четырехгранный стакан железобетонного фундамента. Стенка стакана армирована неравномерно уложенными горизонтальными сетками с шагом U=50; 100 и 200 мм и вертикальными стержнями пространственного каркаса подколонника фундамента, поперечная арматура стенки стакана определена расчетом, продольная арматура подколонника принята конструктивно / Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона - М, СИ, 1978, - 175 с. (см. гл. 2: Сетки, с. 13-18. Каркасы, с. 19-25; гл. 3: фундаменты, с. 65-89, рис. 59,а; рис. 60) [2]- взято за прототип.

Недостатками известного технического решения являются: сложность проектирования и изготовления элементов железобетонного фундамента, многооперационность при изготовлении арматурных сеток и многоплановость их расположения по высоте подколонника, большой расход бетона (на 30%) при изготовлении фундамента прямоугольного в плане, необходимость проектирования и изготовления временной опалубки, повышающей стоимость железобетонных работ на 25-30%.

Сущность изобретения заключается в совершенствовании конструкции, в упрощении расчета площади рабочей арматуры и проектирования подколонника из существующих сборных железобетонных элементов кольцевого очертания, используемых в качестве несъемной опалубки железобетонного фундамента; в снижении трудоемкости и сроков возведения фундамента; в повышении надежности работы и экономичности расходования изделий и материалов на изготовление железобетонного фундамента под колонну.

Технический результат - повышение прочности и жесткости фундамента под колонну; снижение трудозатрат на изготовление железобетонного фундамента на 30% и более; сокращение объема нового бетона на 30-50% для заполнения подколонника фундамента; повышение надежности работы фундамента колонны за счет надежного защемления железобетонной колонны здания в фундаменте; сокращение срока возведения железобетонного фундамента под колонну; повышение экономичности расходования изделий и материалов на изготовление фундамента стаканного типа.

Технический результат достигается тем, что в фундаменте под колонну, включающем железобетонный подколонник стаканного типа, армированный пространственным каркасом, и сопряженную с ним фундаментную плиту, особенностью является то, что подколонник выполнен из типового сборного железобетонного кольца, установленного в качестве несъемной опалубки на фундаментную плиту и заполненного бетоном замоноличивания с предварительной установкой по его центру опорного столбика, соединенного с фундаментной плитой, при этом пространственный каркас расположен между опорным столбиком и кольцом, а высота опорного столбика определена по уравнению (1):

где hck и hc - высота железобетонного кольца и высота стакана подколонника, мм.

Класс бетона замоноличивания колонны в подколоннике принят не менее, чем на одну ступень выше класса бетона по прочности на сжатие железобетонного кольца.

Бетон замоноличивания и бетон кольца приведен к одному классу бетона по прочности на сжатие и толщина железобетонного кольца (cred, мм) вычислена по уравнению (2):

где m0=0,9; С - толщина железобетонного кольца по проекту, мм; Rb1 и Rb -расчетное сопротивление бетона железобетонного кольца и бетона замоноличивания, МПа.

Площадь сечения бетона подколонника (А, мм2) вычислена по уравнению (3):

где π=3,142; r1 и r2 - внутренний и наружный радиусы сечения железобетонного кольца, мм.

Внутренний (r1 мм), наружный (r2, мм) и средний (rm, мм) радиусы кольцевого сечения подколонника вычислены по уравнению (4), (5) и (6):

где d0 - диаметр пустоты железобетона, мм; DH - наружный диаметр железобетонного кольца; С - толщина железобетонного кольца, мм; Cred - приведенная толщина железобетонного кольца, мм.

Коэффициент увеличения эксцентриситета продольной силы (η) вычислен по аналитическому уравнению (7):

где М - изгибающий момент на уровне обреза фундамента, кН⋅м; Rb - расчетное сопротивление монолитного бетона, МПа; rm - средний радиус кольцевого сечения подколонника, мм; А - площадь сечения бетона подколонника, мм2.

Относительная продольная сила на обрез фундамента (αN) вычислена по уравнению (8):

где N - продольная сила, кН; Rb - расчетное сопротивление монолитного бетона, МПа; А - площадь сечения бетона подколонника, мм2.

Относительный изгибающий момент (αM) вычислен по уравнению (9):

где N - продольная сила, кН; е - эксцентриситет продольной силы, мм;

Rb - расчетное сопротивление монолитного бетона, МПа; А - площадь сечения бетона подколонника, мм2; rm - средний радиус кольцевого сечения подколонника, мм.

Относительная площадь продольной рабочей арматуры пространственного каркаса (αS) вычислена по аналитическому уравнению (10):

где αM αN - относительные изгибающий момент и соответственно продольная сила, действующие на уровне обреза фундамента.

Площадь сечения продольных стержней пространственного каркаса (AS,tot, мм2), подколонника вычислена по уравнению (11):

где αS - относительная площадь продольной рабочей арматуры пространственного каркаса; Ab,tot - суммарная площадь бетона в расчетном сечении подколонника, мм2; Rb и RS - расчетные сопротивления монолитного бетона и арматуры класса А400 соответственно сжатию, МПа.

Поперечная арматура пространственного каркаса выполнена в виде спирали или в виде кольцевых стержней.

Для обеспечения проектного расположения продольной арматуры пространственного каркаса применены фиксаторы каркаса, остающиеся в бетоне замоноличивания.

В качестве опорного столбика использован отрезок стальной или пластмассовой трубы-пустотообразователя.

Причинно-следственная связь между совокупностью признаков и техническим результатом заключена в следующем:

Использование несъемной железобетонной опалубки для возведения фундамента стаканного типа приводит к сокращению объема нового бетона для подколонника, а также к повышению производительности работ при изготовлении сварных сеток и арматурного каркаса, к повышению качества работ, к снижению срока возведения фундамента стаканного типа, к повышению экономичности расходования конструктивного бетона и арматурной стали. Исключение работ по созданию временной опалубки приводит к снижению трудозатрат по изготовлению железобетонного фундамента стаканного типа на 30% и более. Использование результатов математического описания алгоритма расчета прочности сжатого железобетонного элемента кольцевого сечения упрощает определение требуемой площади рабочей арматуры каркаса и несущей способности подколонника фундамента стаканного типа.

Пример. Исходные данные: Для развитого подколонника составного сборно-монолитного фундамента со стаканной частью под колонну диаметром dКОЛ=400 мм использовано стеновое железобетонное кольцо с пустотообразователем диаметром dР=dКОЛ=400 мм, внутренний диаметр DB=700 мм, наружний диаметр DH=840 мм, толщина стенки С=70 мм, бетон класса В20 (Rb1=11,5 МПа), монолитный бетон класса В30 (Rb=17 МПа), рабочая арматура пространственного каркаса класса А400 (RS=350 МПа), число рабочих продольных стержней пространственного каркаса n=6÷8 шт., нагрузка на обрез фундамента: продольная сила N=3300 кН, изгибающий момент М=330 кН м, эксцентриситет продольной силы е0=M/N=330/3300=0,1 м=100 мм.

Требуется определить площадь рабочих продольных стержней пространственного каркаса подколонника.

Расчет. 1) Приведенная к одному классу бетона по прочности на сжатие толщина кольца (cred, мм) вычислена по уравнению (1):

где m0=0,9 - коэфициент условий работы, С - толщина кольца, мм;

Rb1 Rb - расчетное сопротивление бетона кольца и бетона замоноличивания, МПа;

2) Внутренний (r1, мм), наружный (r2, мм) и средний (rm,мм) радиусы кольцевого сечения подколонника вычислены по уравнению (3), (4) и (5):

где d0 - диаметр пустоты железобетона, мм, DH - наружный диаметр железобетонного кольца, мм, С и Cred - толщина кольца и приведенная к одному классу по прочности на сжатие толщина кольца, мм;

3) Коэффициент увеличения эксцентриситета продольной силы (η) вычислен по аналитическому уравнению (6):

где М - изгибающий момент на обрез фундамента, кН⋅м, Rb - расчетное сопротивление монолитного бетона на сжатие, МПа, rm - средний радиус кольцевого сечения подколонника, мм, АВ - площадь сечения бетона подколонника, мм2;

4) Относительный изгибающий момент (αМ) вычислен по уравнению (8):

где N - продольная сила, кН, е - эксцентриситет продольной силы, мм, Rb - расчетное сопротивление монолитного бетона на сжатие, МПа, АВ - площадь сечения бетона подколонника, мм2, rm - средний радиус кольцевого сечения подколонника, мм

5) Относительная продольная сила вычислена по уравнению (7):

где N - продольная сила, кН, Rb - расчетное сопротивление монолитного бетона на сжатие, МПа, АВ - площадь сечения бетона подколонника, мм2.

6) Относительная площадь продольных рабочих стержней пространственного каркаса (αS) подколонника вычислена по аналитическому уравнению (9):

где αМ и αN - относительный изгибающий момент и соответственно продольная сила на обрезе фундамента;

7) Площадь сечения продольных стержней пространственного каркаса (AS,tot, мм2) подколонника вычислена по уравнению (10):

где αS - относительная площадь сечения продольной арматуры каркаса;

Ab,tot - суммарная площадь бетона в расчетном сечении подколонника, мм2;

Rb и RS - расчетные сопротивления бетона и арматуры сжатию, МПа. Принято

На фиг. 1 изображены армированный фундамент стаканного типа под колонну (продольное сечение А-А): 1 - железобетонное кольцо; 2 - колонна; 3 - бетон замоноличивания; 4 - продольная рабочая арматура пространственного каркаса; 5 - поперечная арматура пространственного каркаса в виде спирали; 6 - опорный столбик; 7 - пространственный каркас; 8 - фиксаторы каркаса; 9 - кольцо жесткости пространственного каркаса; 10 - фундаментная плита; 11 - арматура фундаментной плиты; 12 - монтажные петли; dCT - диаметр стакана подколонника; dкол - диаметр колонны; δСТ - толщина стенки стакана; С - толщина железобетонного кольца; b - толщина бетона замоноличивания; hCK - высота железобетонного кольца; hc - высота стакана подколонника, мм.

На фиг. 2 изображено поперечное сечение (Б-Б) стаканной части подколонника и его армирование: 1 - железобетонное кольцо; 2 - колонна; 3 - бетон замоноличивания; 4 - продольная рабочая арматура пространственного каркаса; 5 - поперечная арматура пространственного каркаса в виде спирали; 7 - пространственный каркас; 8 - фиксаторы каркаса; DKC - диаметр пространственного каркаса; DH - наружный диаметр железобетонного кольца; dCT - диаметр стакана подколонника; dКОЛ - диаметр колонны; δCT - толщина стенки стакана; С - толщина железобетонного кольца; b - толщина бетона замоноличивания;.

На фиг. 3 изображен пространственный каркас, образованный путем навивки спиральной арматуры (фиг. 3, а) или кольцевых стержней (фиг. 3, 6) на продольную рабочую арматуру: 4 - продольная рабочая арматура пространственного каркаса; 5 - поперечная арматура пространственного каркаса в виде спирали; 8 - фиксаторы каркаса; 9 - кольцо жесткости пространственного каркаса; 13 - поперечная арматура пространственного каркаса в виде кольцевых стержней.

На фиг. 4 изображен фиксатор каркаса, выполненный из стали, для обеспечения проектного положения пространственного каркаса: 4 - продольная рабочая арматура пространственного каркаса; 8 - фиксатор каркаса.

Фундамент под колонну состоит из подколонника стаканного типа, опорного столбика - 6, пространственного каркаса - 7, снабженного фиксаторами каркаса - 8, и бетона замоноличивания - 3.

Для изготовления подколонника стаканного типа в качестве несъемной опалубки использовано типовое железобетонное кольцо - 1, установленное на армированную фундаментную плиту - 10 в центре которого расположен опорный столбик - 6. В фундаментной плите - 10 заложена арматура - 11.

Опорный столбик - 6 в виде отрезка стальной или пластмассовой трубы установлен по центру подколонника на фундаментную плиту - 10 и надежно прикреплен к ней при помощи монтажных петель - 12. Опорный столбик - 6 высотой hOC и диаметром dOC предназначен для установки на нем колонны - 2. Наличие опорного столбика - 6 позволяет временно закрепить и отцентрировать положение колонны, а также сэкономить бетон замоноличивания - 3.

Для обеспечения проектного положения продольной рабочей арматуры пространственного каркаса - 4, а также нормативной величины защитного слоя бетона необходимо предусматривать специальные фиксаторы каркаса - 8. Это отрезки стержней арматуры, соединенные между собой и с продольной рабочей арматурой пространственного каркаса - 4 сварными швами. Фиксаторы каркаса - 8 упираются во внутреннюю поверхность железобетонного кольца - 1, являющегося одновременно опалубкой для бетона замоноличивания - 3, фиксируя таким образом проектное положение арматурного каркаса.

Кольцо жесткости пространственного каркаса - 9 представляет собой арматурный стержень, согнутый в кольцо. Диаметр арматурного стержня, применяемого для создания кольца жесткости пространственного каркаса - 9, превышает диаметр поперечной арматуры пространственного каркаса в виде спирали - 5. Это позволяет увеличить жесткость арматурного каркаса.

Прочность и жесткость фундамента стаканного типа под колонну повышается за счет использования типового железобетонного кольца - 1 в качестве несъемной опалубки при изготовлении подколонника стаканного типа. Прочность и жесткость конструкции также может быть повышена за счет применения более высоких классов по прочности бетона и арматуры. Поперечная арматура пространственного каркаса в виде спирали - 5 также способствует дополнительному повышению сопротивления сжатию бетона в зоне местного сжатия.

Предлагаемое техническое решение по проектированию и изготовлению подколонника фундамента стаканного типа позволяет значительно снизить расход материалов, снизить трудоемкость при возведении работ нулевого цикла здания. Оно используется в «Центре инженерно-технических разработок» и «Отраслевой научно-исследовательской лабораторий железобетонных конструкций» Академии строительства и архитектуры СамГТУ (Самара 2020 г.)

Источники информации

1. А.с. SU 863774, Е02Д 27/42. Сборно-монолитный фундамент под колонну / Б.Х. Дин, заяв. 23.01.78, опубл. 15.09.81, Бюл. №34

2. Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона. - М., Стройиздат, 1978, - 175 с. (см. гл. 2: Сетки, с. 13-18; Каркасы, с. 19-25; гл. 3: Фундаменты, с. 65-89, рис. 59, а; рис. 60).

Источник поступления информации: Роспатент

Показаны записи 21-30 из 191.
26.08.2017
№217.015.d9b0

Способ компенсации оптических аберраций с использованием деформируемого зеркала

Изобретение относится к способам, которые обеспечивают компенсацию оптических аберраций с использованием деформируемого зеркала, и может быть использовано в активных и адаптивных оптических системах, предназначенных для компенсации аберраций волнового фронта светового излучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002623661
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.df33

Способ приготовления кисломолочногопродукта

Изобретение относится к молочной промышленности. Подготовленное молоко подвергают действию электрического тока в катодном пространстве диафрагменного электролизера с плоскими электродами из нержавеющей стали 10Х17Н13М2Т при объемной плотности тока 2 А/см и катодной плотности тока 0,018 А/см в...
Тип: Изобретение
Номер охранного документа: 0002625030
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f85d

Адсорбент для очистки сточных вод от ионов меди

Изобретение относится к охране окружающей среды. Предложен сорбент для очистки сточных вод от меди. Сорбент представляет собой отработанный в процессе фильтрации пива кизельгур, подвергнутый сушке при 50-200°C и последующей термохимической активации при 60-100°C. Активацию проводят в 2,0-2,5 М...
Тип: Изобретение
Номер охранного документа: 0002639803
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8cd

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением...
Тип: Изобретение
Номер охранного документа: 0002639706
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0516

Способ производства фруктового продукта в виде пластинок из груш, яблок и виноградного сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктового продукта в виде пластинок из груш, яблок и виноградного сырья. Пищевой продукт готовят путем подготовки груш и яблок. Удаляют несъедобные части и кожуру. Режут на ломтики толщиной 5-8 мм, обрабатывают в...
Тип: Изобретение
Номер охранного документа: 0002630702
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.078f

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп. При этом готовят совместный пропиточный раствор MoO и/или WO, не обязательно VO, от 0,33 до...
Тип: Изобретение
Номер охранного документа: 0002631424
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.0f39

Способ получения 1н-бензо[f]хромен-2-ил(арил)кетонов

Изобретение относится к способу получения 1-бензо[ƒ]хромен-2-ил(арил)кетонов реакцией замещенных 1-[(диметиламино)метил]-2-нафтолов с 3-(диметиламино)-1-арил-проп-2-ен-1-онами. Полученные соединения являются перспективными исходными соединениями для синтеза фармакологически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002633368
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f41

Расплавляемый электролит для химического источника тока

Изобретение относится к расплавляемому электролиту для химического источника тока, включающему при следующем соотношении компонентов, мас. %: фторид лития 1,57…1,63, хромат лития 64,59…66,29, хлорид калия 16,38…18,52, хромат калия 15,32…15,70. Технический результат – снижение температуры...
Тип: Изобретение
Номер охранного документа: 0002633360
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1152

Погружной скважинный генератор газопаровой смеси

Изобретение относится к области промышленной теплоэнергетики и может быть применено для генерирования газопаровой смеси с целью термической обработки скважин в нефтедобывающей промышленности. Техническим результатом изобретения является обеспечение надежного функционирования генератора...
Тип: Изобретение
Номер охранного документа: 0002633983
Дата охранного документа: 20.10.2017
Показаны записи 21-30 из 42.
25.08.2017
№217.015.b985

Способ оценки огнестойкости железобетонной балочной конструкции здания

Изобретение относится к области пожарной безопасности зданий и сооружений и может быть использовано для классификации железобетонных балочных конструкций. Сущность изобретения заключается в том, что испытание железобетонной балочной конструкции здания проводят без разрушения, по комплексу...
Тип: Изобретение
Номер охранного документа: 0002615048
Дата охранного документа: 03.04.2017
29.12.2017
№217.015.f6bf

Способ определения пожарно-технических характеристик элементов и материалов комплексной облицовки стальной балки с гофрированной стенкой

Изобретение относится к области пожарной безопасности зданий, в частности, может быть использовано при изготовлении конструктивной огнезащиты сварного двутавра стальной балки здания. Способ определения пожарно-технических характеристик элементов и материалов комплексной облицовки стальной балки...
Тип: Изобретение
Номер охранного документа: 0002639209
Дата охранного документа: 20.12.2017
19.01.2018
№218.016.0054

Балка двутаврового сечения с гофрированной стенкой

Изобретение относится к области строительства, в частности к конструкциям гражданских, промышленных и общественных зданий и сооружений. Балка двутаврового сечения с гофрированной стенкой содержит полки и приваренную к ним стенку из металлического гофрированного листа с поперечным расположением...
Тип: Изобретение
Номер охранного документа: 0002629270
Дата охранного документа: 28.08.2017
20.01.2018
№218.016.13ae

Способ оценки огнестойкости стальной термозащищённой гофробалки здания

Изобретение относится к области пожарной безопасности зданий, в частности, оно может быть использовано для пожарно-технической классификации стальной термозащищенной гофробалки по показателям сопротивления воздействию пожара. Оценку огнестойкости стальной гофробалки проводят без разрушения по...
Тип: Изобретение
Номер охранного документа: 0002634568
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.13c3

Способ оценки огнестойкости стальной балки с гофростенкой

Изобретение относится к области пожарной безопасности зданий. При осуществлении способа испытание стальной балки с гофростенкой проводят без разрушения по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля. Для этого определяют геометрические...
Тип: Изобретение
Номер охранного документа: 0002634569
Дата охранного документа: 31.10.2017
10.05.2018
№218.016.47c1

Способ оценки огнестойкости балочной конструкции

Изобретение относится к области пожарной безопасности зданий и сооружений. Предложен способ оценки огнестойкости стальной гофрированной стенки, растянутого и сжатого железобетонных поясов составной балки здания без нарушения ее пригодности по комплексу единичных показателей качества. Для...
Тип: Изобретение
Номер охранного документа: 0002650704
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4b8c

Конструкция огнезащищённой стальной балки

Изобретение относится к области пожарной безопасности зданий, в частности, оно может быть использовано при изготовлении огнезащищенной стальной балки с гофрированной стенкой. Техническим результатом изобретения является совершенствование конструкции огнезащиты стальной балки с гофрированной...
Тип: Изобретение
Номер охранного документа: 0002651997
Дата охранного документа: 24.04.2018
14.06.2018
№218.016.61f9

Способ оценки огнестойкости ограждающей конструкции здания по критерию теплоизолирующей способности

Изобретение относится к области пожарной безопасности зданий и может быть использовано для классификации ограждающих конструкций зданий по их показателям сопротивления воздействию высоких температур при пожаре. Оценку огнестойкости ограждающей конструкции здания проводят без разрушения, по...
Тип: Изобретение
Номер охранного документа: 0002657328
Дата охранного документа: 13.06.2018
21.10.2018
№218.016.94a3

Способ выявления сопротивления растяжению арматуры железобетонного элемента в условиях пожара

Изобретение относится к области пожарной безопасности зданий, в частности к огнестойкости железобетонных элементов конструкций здания, и касается исследования и анализа качества растянутой арматуры с помощью тепловых средств при совместном воздействии нагрузки и высокой температуры стандартного...
Тип: Изобретение
Номер охранного документа: 0002670239
Дата охранного документа: 19.10.2018
09.11.2018
№218.016.9bb0

Способ оценки огнестойкости многопустотной преднапряженной железобетонной плиты

Изобретение относится к области пожарной безопасности зданий - огнестойкости их конструкций. Сущность изобретения заключается в том, что испытание многопустотной преднапряженной многопустотной железобетонной плиты проводят без разрушения, по комплексу единичных показателей качества. Для этого...
Тип: Изобретение
Номер охранного документа: 0002671910
Дата охранного документа: 07.11.2018
+ добавить свой РИД