×
16.06.2023
223.018.7a18

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ЗАГОТОВКИ НА МЕТАЛЛОРЕЖУЩЕМ СТАНКЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлообработки и может быть использовано при настройке токарных, фрезерных и им подобных металлорежущих станков. Способ обработки включает придание исполнительному органу механизма подачи станка поступательного движения с заданной скоростью и шпинделю станка вращательного движения с заданной частотой вращения, при этом предварительно устанавливают численное значение частоты собственных колебаний технологической системы станка и численные значения частот вынужденных колебаний, действующих на технологическую систему при всех значениях скорости подачи и частоты вращения согласно паспортным характеристикам станка. Скорость подачи и частоту вращения задают из области допустимых значений за исключением значений, совпадающих с координатами линии проекции, которую определяют на основании соответствующих графических построений в декартовых координатах функции частоты вынужденных колебаний и плоскости, с аппликатой, равной значению частоты собственных колебаний. Использование изобретения позволяет повысить точность и качество обработки, а также увеличить продолжительность безотказной работы станка. 3 ил.

Предлагаемый способ относится к области машиностроения и может быть использован при эксплуатации токарных, фрезерных и им подобных металлорежущих станков.

В настоящее время широко известны различные способы обработки металлов резанием, когда специальным инструментом создают изделие требуемой формы путем снятия стружки. Простейший вариант такой обработки − это обработка вручную (www. telenir.net Слесарные работы/Работы по металлу). В этом случае инструмент удерживается руками рабочего и с помощью этих рук совершает движение относительно заготовки. Главным показателем качества обработки при этом является точность формообразования изделия, и настройка на обработку выражается в выборе инструмента и закреплении заготовки изделия в установочном приспособлении.

Ручная обработка крайне непроизводительна и имеет весьма ограниченные технологические возможности. Более широкими технологическими возможностями обладает обработка на металлорежущих станках – машинах, обеспечивающих механизированное движение инструмента и заготовки относительно друг друга с помощью электро- или гидроприводов.

Всякий станок типа токарного или фрезерного имеет механизм подачи с приводом и исполнительным органом, совершающим поступательное движение, и шпиндель, также имеющий привод, но совершающий вращательное движение. При обработке на токарных станках исполнительный орган механизма подачи – суппорт с резцом; на фрезерных станках – стол с приспособлением. Шпиндель имеется у того и другого, только на токарных станках в нем закрепляют заготовку, а на фрезерных – фрезу.

Обработка на станке, как правило, включает в себя придание исполнительному органу механизма подачи станка поступательного движения со скоростью S и шпинделю станка – вращательного движения с частотой вращения n, обусловленных требуемой производительностью и приемлемой стойкостью режущего инструмента («Г.И. Грановский, В.Г. Грановский. Резание металлов. М.: Высшая школа, 1985, стр.10−11»). Однако, исходя из требуемой производительности обработки и приемлемой стойкости инструмента, в процессе работы станка можно столкнуться с явлением резонанса. Резонанс обычно возникает, если частота собственных колебаний технологической системы станка ТСС (о ТСС см., например, книгу: М.П. Журавлев. Исследование и испытание технологических систем. Екатеринбург: УрФУ, 2017) совпадает с частотой вынужденных колебаний , действующих на ТСС при резании. Но частота , как показывает опыт эксплуатации станков, существенно зависит от n и S, поэтому, придавая последним при настройке станка значения, не учитывающие возможность резонанса, его и можно вызвать. В результате ухудшается качество обработки изделия, снижаются стойкость инструмента и долговечность станка.

Проблемой, решаемой предлагаемым способом, является недостаточная виброзащищенность прототипа и предотвращение (или, по крайней мере, снижение вероятности) резонанса при работе станка, что будет способствовать повышению качества обработки изделий, увеличению периода стойкости инструмента и продлению времени безотказной эксплуатации станка.

Технически решение указанной проблемы обеспечивается за счет того, что способ обработки заготовки на металлорежущем станке, включающий придание исполнительному органу механизма подачи станка поступательного движения с заданной скоростью и шпинделю станка вращательного движения с заданной частотой вращения , отличающийся тем, что предварительно устанавливают численное значение частоты собственных колебаний технологической системы станка и численные значения частот вынужденных колебаний, действующих на технологическую систему при всех значениях и в диапазонах соответственно от до и от до согласно паспортным характеристикам станка, при этом в декартовых координатах , принимая ось в качестве абсциссы, ось в качестве ординаты и ось в качестве аппликаты, строят графическое изображение функции в зависимости от переменных и плоскость, параллельную плоскости , с аппликатой, равной значению , и находят проекцию на плоскость линии пересечения упомянутых графического изображения функции и плоскости с аппликатой , причем скорость подачи и частоту вращения шпинделя задают из области упомянутых диапазонов значений за исключением значений, совпадающих с координатами линии упомянутой проекции.

На фиг. 1 – 3 показаны иллюстрации приемов, составляющих предлагаемый способ. На фиг. 1 – пример построения графика функции = F(n,s) , на фиг. 2 – изображение на нем плоскости с аппликатой , на фиг. 3 – проекция линии пересечения графика с плоскостью .

Способ осуществляют следующим образом. На станке, используемом для изготовления требуемой детали, закрепляют режущий инструмент и заготовку. Затем известными методами (например, описанными в книге «Проектирование металлорежущих станков и станочных систем. В 3-х томах. Т.1: Проектирование станков/ А.С. Проников и др. М.: Машиностроение, 1994» или в книге Я.Г. Пановко Введение в теорию механических колебаний. М.: Наука, 1980) устанавливают частоту собственных колебаний полученной технологической системы. После этого по паспорту станка определяют диапазон частот вращения шпинделя станка от до и возможные промежуточные значения n в этом диапазоне: , и т.д. Аналогично, также по паспорту станка, определяют диапазон подач от до и возможные промежуточные значения S. Далее, используя экспериментальные методы (например, по числу заострений на поверхности стружки [см. «Г.И. Грановский, В.Г. Грановский. Резание металлов»]) или путем теоретического расчета (см., например, Я.Г. Пановко, Введение в теорию механических колебаний») устанавливают зависимость частот вынужденных колебаний , действующих на технологическую систему в функции от n и S. (Полученные данные могут быть систематизированы в форме таблицы). После этого, используя классические методы построения графиков (см., например, «И.М. Гельфанд и др. Функции и графики. М.: Наука, 1971»), строят график = F(n,s), где F(n,s) – функция от переменных n и S, в декартовых координатах , , , , принимая ось в качестве абсциссы, в качестве ординаты и ось в качестве аппликаты. Затем в этой же системе координат изображают плоскость с аппликатой, равной значению , параллельную плоскости , и находят линию пересечения этой плоскости с графиком = F(n,s). Далее строят проекцию полученной линии на плоскость .

Выполнив перечисленные действия, на плоскости выбирают точку, смещенную от проекции линии пересечения, и ее координаты по осям и принимают за настроечные значения n и S. Поскольку таких точек может быть множество, из них можно выбрать такую, которой соответствуют n и S, удовлетворяющие каким-либо дополнительным требованиям. Например, требованиям к производительности обработки и стойкости режущего инструмента. Указанные требования могут быть учтены так, как это делается обычно, в частности в соответствии со «Справочником технолога-машиностроителя. В 2-х томах. Т.2, М.: Машиностроение, 1986. Стр. 261-303». Выбрав точку, смещенную от проекции линии пересечения графика = F(n,s) и плоскости с аппликатой , и определив ее координаты по осям и далее частоту вращения шпинделя станка настраивают на численное значение n, соответствующее координате по оси , а подаче придают численное значение S, соответствующее координате по оси .

Покажем применение способа на примере. Пусть имеется бесконсольный вертикально-фрезерный станок, у которого = 50 об/мин,= 3500 об/мин, = 20 мм/мин ,= 2000 мм/мин, причем n может изменяться с шагом 230, а S – с шагом 132 . В шпинделе закреплена концевая фреза с параметрами z = 10 ,= 120 мм ,38°, где z – число зубьев фрезы, D – диаметр фрезы, – угол наклона зубьев фрезы. Масса шпиндельного узла станка = 1000 кг, жесткость этого узла , масса инструмента = 5 кг , жесткость инструмента .

Пользуясь известными соотношениями, имеющими в данном случае вид

и

с достаточной для инженерных расчетов точностью получим частоту собственных колебаний технологической системы =65 Гц. Установим частоты вынужденных колебаний , действующих на технологическую систему, используя также известное соотношение

где B – ширина фрезерования, коэффициент жесткости системы «заготовка – приспособление». Приняв =1 на основании данных, приведенных в упоминаемом выше «Справочнике технолога-машиностроителя…», и полагая B = 80 мм, получим

Построим график в координатах , и (фиг. 1). Изобразим в этих же координатах плоскость с аппликатой, равной =65 Гц и найдем линию пересечения графика F(n,s) и плоскости, соответствующей (фиг. 2). Построим проекции линии пересечения на плоскость (фиг. 3). Выберем на этой плоскости точку А, смещенную от этой проекции и определим её координаты: по оси – 1100, по оси – 600. Придадим далее полученные числовые значения n и S, соответственно, частоте вращения шпинделя станка (настроим частоту вращения шпинделя на найденную величину n) и скорости поступательного перемещения исполнительного органа (в данном случае стола) механизма подачи станка (настроим эту скорость на найденную величину S). При эксплуатации станка в рабочем режиме после такой настройки явление резонанса либо вообще будет предотвращено, либо будет маловероятно. Для обеспечения наиболее надежного предотвращения резонанса смещение точки А от проекции линии пересечения плоскости с аппликатой и графика F(n,S) целесообразно смещать примерно на 25% от расстояния этой проекции от начала координат, в которых построен график F( n,S).

Техническим результатом предложенного способа будет повышение стойкости режущего инструмента, долговечности механизмов станка и точности производимой на нем обработки, что непосредственно следует из невозникновения резонанса.

Способ обработки заготовки на металлорежущем станке, включающий придание исполнительному органу механизма подачи станка поступательного движения с заданной скоростью S и шпинделю станка вращательного движения с заданной частотой вращения n, отличающийся тем, что предварительно устанавливают численное значение f частоты собственных колебаний технологической системы станка и численные значения f частот вынужденных колебаний, действующих на технологическую систему при всех значениях n и S в диапазонах соответственно от n до n и от S до S согласно паспортным характеристикам станка, при этом в декартовых координатах ОnSf, принимая ось Оn в качестве абсциссы, ось ОS в качестве ординаты и ось Оf в качестве аппликаты, строят графическое изображение функции f в зависимости от переменных n, S и плоскость, параллельную плоскости ОnS, с аппликатой, равной значению f, и находят проекцию на плоскость ОnS линии пересечения упомянутых графического изображения функции f и плоскости с аппликатой f, причем скорость подачи S и частоту вращения шпинделя n задают из области упомянутых диапазонов значений за исключением значений, совпадающих с координатами линии упомянутой проекции.
Источник поступления информации: Роспатент

Показаны записи 61-70 из 207.
20.01.2018
№218.016.147f

Автодинный измеритель отклонения от номинального значения внутренних размеров металлических изделий

Изобретение относится к технике неразрушающего контроля изделий, а именно к устройствам для бесконтактного измерения отклонений от номинального значения внутренних размеров металлических изделий с использованием электромагнитного излучения СВЧ диапазона, и может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002634785
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.15a1

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов (РЗЭ) при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов РЗЭ. B способе извлечения РЗЭ сорбцию РЗЭ...
Тип: Изобретение
Номер охранного документа: 0002635206
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.1f2f

Натриевая соль 3-нитро-4-оксо-1,4-дигидропиразоло[5,1-с]-1,2,4-триазин-8-карбоновой кислоты, дигидрат

Изобретение относится к натриевой соли 3-нитро-4-оксо-1,4-дигидропиразоло[5,1-с]-1,2,4-триазин-8-карбоновой кислоты, дигидрату, Технический результат: получено новое соединение, проявляющее антигликирующие свойства. 2 табл., 3 пр.
Тип: Изобретение
Номер охранного документа: 0002641107
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.20e7

Способ измельчения минерального сырья

Изобретение относится к горнорудной промышленности и может быть использовано при измельчении минерального сырья перед обогащением или гидрометаллургической переработкой. Способ включает предварительную обработку водным раствором ПАВ с наложением импульсного физического воздействия и последующее...
Тип: Изобретение
Номер охранного документа: 0002641527
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.31c1

Способ извлечения благородных металлов из цианистых растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ включает контактирование цианистых растворов с осаждающим компонентом, в качестве которого используют порошки цинка или алюминия, нанесенные на фильтровальную бумагу....
Тип: Изобретение
Номер охранного документа: 0002645168
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3380

Струйный аппарат с изменяемым осевым расстоянием между соплом и камерой смешения

Струйный аппарат предназначен для повышения эффективности и надежности функционирования вакуумных насосов. Аппарат включает расположенные последовательно, трубопровод подвода пассивной среды, сопло, приемную камеру, камеру смешения, диффузор и переходный патрубок. Пассивная среда подводится к...
Тип: Изобретение
Номер охранного документа: 0002645635
Дата охранного документа: 26.02.2018
04.04.2018
№218.016.361b

Способ изготовления круглых кристаллов с фаской, устройство и лезвийный инструмент для осуществления способа

Изобретение относится к области изготовления силовых полупроводниковых приборов и может быть использовано для разделения полупроводниковых пластин на круглые кристаллы. Способ включает формирование фаски алмазным лезвийным инструментом и вырезку кристаллов из пластины, которые выполняют одним...
Тип: Изобретение
Номер охранного документа: 0002646301
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36c1

Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на...
Тип: Изобретение
Номер охранного документа: 0002646548
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.448a

Гидродинамический теплогенератор для сети теплоснабжения

Изобретение может быть использовано в теплоэнергетике в качестве автономного источника тепловой энергии. Гидродинамический кавитационный теплогенератор содержит два источника электромагнитного поля и два статора от асинхронных электродвигателей, соосно и встречно расположенных на немагнитном...
Тип: Изобретение
Номер охранного документа: 0002650015
Дата охранного документа: 06.04.2018
Показаны записи 11-12 из 12.
19.06.2023
№223.018.8276

Малогабаритный колесотокарный станок для обработки колесных пар локомотивов и вагонов без выкатки

Изобретение относится к области железнодорожного транспорта и может быть использовано для ремонта локомотивов и вагонов. Малогабаритный колесотокарный станок для обработки колесных пар локомотивов и вагонов без выкатки содержит станину, продольные направляющие, суппорт, поперечные направляющие...
Тип: Изобретение
Номер охранного документа: 0002797231
Дата охранного документа: 31.05.2023
19.06.2023
№223.018.828b

Отрезной резец

Изобретение относится к области машиностроения и предназначено для безвибрационной механообработки на металлорежущих станках. Отрезной резец для токарной обработки состоит из головки в виде пластины с режущим элементом и державки со встроенным виброгасителем цилиндрический формы в виде двух...
Тип: Изобретение
Номер охранного документа: 0002797230
Дата охранного документа: 31.05.2023
+ добавить свой РИД