×
16.06.2023
223.018.7a08

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РЕБАУДИОЗИДА C С ПРИМЕНЕНИЕМ ФЕРМЕНТАТИВНОГО СПОСОБА

Вид РИД

Изобретение

№ охранного документа
0002736155
Дата охранного документа
12.11.2020
Аннотация: Изобретение относится к области биотехнологии. Предложен способ получения ребаудиозида C с применением ферментативного способа, включающий использование рубузозида или дулькозида А в качестве субстрата и получение продукта в присутствии донора гликозила и/или донора рамнозила, реакцию в условиях катализа с применением содержащих UDP-гликозилтрансферазу рекомбинантных клеток и/или полученной из них UDP-гликозилтрансферазы. Изобретение позволяет получить ребаудиозид C высокой чистоты с меньшими затратами и более коротким циклом производства. 9 з.п. ф-лы, 4 ил., 8 пр.

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способу получения ребаудиозида С и, в частности, относится к биологическому способу получения ребаудиозида С.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Подсластители представляют собой класс пищевых добавок, которые широко применяют в производстве продуктов питания, таких как напитки и кондитерские изделия. Их можно добавлять в процессе производства продуктов питания или, в альтернативном варианте осуществления, можно использовать при соответствующем разбавлении в качестве заменителя сахарозы в домашней выпечке. Подсластители включают натуральные подсластители, например сахарозу, кукурузный сироп с высоким содержанием фруктозы, мед и т.п., и искусственные подсластители, например, аспартам, сахарин и т.п. Стевиозиды представляют собой класс натуральных подсластителей, экстрагируемых из растения Stevia rebaudiana, и в настоящее время их широко используют в продуктах питания и напитках. Экстракт Stevia rebaudiana содержит разнообразные стевиозиды, включая ребаудиозид. Экстрагируемые естественным путем стевиозиды имеют существенные различия по составу между разными партиями и требуют последующей очистки.

В обычном способе получения ребаудиозида С ребаудиозид С экстрагируют из листьев Stevia rebaudiana. Например, как описано в патенте США US 8,501,261, приблизительно 111 г продукта с чистотой 87,6% можно получить путем экстракции из 10 кг листьев Stevia rebaudiana. Поскольку процентная доля ребаудиозида С в листьях Stevia rebaudiana относительно низка (приблизительно 10% от общей массы вещества в сухом состоянии), стоимость традиционного производства ребаудиозида С относительно выше, чем стоимость производства ребаудиозида А (приблизительно 60% от общей массы вещества в сухом состоянии). Кроме того, из-за ограниченного выхода коммерческое применение ребаудиозида С затруднительно.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Техническая задача, которую предстоит решить с помощью настоящего изобретения, состоит в устранении недостатков предшествующего уровня техники. В настоящем изобретении это достигается путем разработки способа получения ребаудиозида С с применением ферментативного способа. При таком способе продукт ребаудиозид С высокой чистоты может быть получен с меньшими затратами и более коротким циклом производства.

Для решения описанной выше технической задачи в настоящем изобретении использовано следующее техническое решение.

Способ получения ребаудиозида С с применением ферментативного способа. В этом способе в качестве субстрата используют дулькозид С; и ребаудиозид С получают в присутствии донора гликозила посредством реакции в условиях катализа с применением содержащих UDP-гликозилтрансферазу рекомбинантных клеток и/или полученной из них UDP-гликозилтрансферазы.

Способ получения ребаудиозида С с применением ферментативного способа. В этом способе в качестве субстрата используют рубузозид; и ребаудиозид С получают в присутствии донора гликозила посредством реакции в условиях катализа с применением содержащих UDP-гликозилтрансферазу рекомбинантных клеток и/или полученной из них UDP-гликозилтрансферазы.

Донор гликозила предпочтительно включает один или два из донора глюкозила и донора рамнозила, причем донор глюкозила представляет собой UDP-глюкозу или систему регенерации UDP-глюкозы (2007, FEBS Letters, 581, 2562-2566), состоящую из сахарозы, синтазы сахарозы и UDP, а донор рамнозила представляет собой UDP-рамнозу. В настоящем документе предпочтительной является система регенерации UDP-глюкозы, состоящая из сахарозы, синтазы сахарозы и UDP. UDP-глюкоза стоит дорого. Эту стоимость можно значительно снизить за счет использования системы регенерации UDP-глюкозы.

Предпочтительно UDP-глюкозилтрансфераза (т.е. уридиндифосфатглюкозилтрансфераза, сокращенно UGT, которая известна в технике) включает один или два из UGT-A из Stevia rebaudiana и UGT-В из Oryza sativa.

Предпочтительно UDP-глюкозилтрансфераза представляет собой UGT-A из Stevia rebaudiana, а аминокислотная последовательность UGT-A по меньшей мере на 60% соответствует последовательности 2, как показано в перечне последовательностей.

Более предпочтительно аминокислотная последовательность UGT-A по меньшей мере на 70% соответствует последовательности 2, как показано в перечне последовательностей.

Более предпочтительно аминокислотная последовательность UGT-A по меньшей мере на 80% соответствует последовательности 2, как показано в перечне последовательностей.

Более предпочтительно аминокислотная последовательность UGT-B из Oryza sativa по меньшей мере на 90% соответствует последовательности 2, как показано в перечне последовательностей.

В соответствии с одним конкретным аспектом аминокислотная последовательность UGT-A полностью соответствует последовательности 2 в перечне последовательностей.

Предпочтительно UDP-глюкозилтрансфераза включает UGT-A из Stevia rebaudiana и UGT-B из Oryza sativa; UDP-гликозилтрансферазу добавляют в реакционную систему в две стадии: сначала на первой стадии добавляют UGT-B, а затем на второй стадии добавляют UGT-A.

Аминокислотная последовательность UGT-A предпочтительно по меньшей мере на 60% соответствует последовательности 2, как показано в перечне последовательностей; и/или аминокислотная последовательность UGT-B по меньшей мере на 60% соответствует последовательности 4, как показано в перечне последовательностей.

Более предпочтительно аминокислотная последовательность UGT-A по меньшей мере на 70% соответствует последовательности 2, как показано в перечне последовательностей; и/или аминокислотная последовательность UGT-B по меньшей мере на 70% соответствует последовательности 4, как показано в перечне последовательностей.

Кроме того, аминокислотная последовательность UGT-A по меньшей мере на 80% соответствует последовательности 2, как показано в перечне последовательностей; и/или аминокислотная последовательность UGT-B по меньшей мере на 80% соответствует последовательности 4, как показано в перечне последовательностей.

Кроме того, аминокислотная последовательность UGT-A по меньшей мере на 90% соответствует последовательности 2, как показано в перечне последовательностей; и/или аминокислотная последовательность UGT-B по меньшей мере на 90% соответствует последовательности 4, как показано в перечне последовательностей.

В соответствии с настоящим изобретением реакцию можно проводить в водной системе при температуре 4-50°С и при рН 5,0-9,0. Предпочтительно реакцию проводят в водной системе при температуре 34-45°С и при рН 7,5-8,5.

Более предпочтительно реакцию проводят в фосфатном буферном растворе.

Более предпочтительно реакционная система включает рекомбинантные клетки, содержащие UDP-гликозилтрансферазу и агент, проникающий в клетку. Кроме того, агент, проникающий в клетку, представляет собой толуол и объемная концентрация толуола в реакционной системе составляет 1-3%.

Более предпочтительно все исходные материалы, используемые для реакции, добавляют в реактор для однородного смешивания и затем доводят температуру до заданного значения и проводят реакцию при перемешивании. После завершения реакции продукт ребаудиозид С можно получить путем очистки. Конкретный способ очистки представляет собой последующую обработку, включая разделение на смолах. В соответствии с данным способом очистки можно получить продукт ребаудиозид С с чистотой до 95%.

Рекомбинантные клетки предпочтительно представляют собой клетки микроорганизма. Более предпочтительно микроорганизм представляет собой Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris.

В соответствии с одним конкретным аспектом настоящего изобретения на первой стадии реакции субстрат представляет собой рубузозид, UDP-гликозилтрансфераза представляет собой UGT-B из Oryza sativa, а последовательность аминокислот из UGT-B из Oryza sativa по меньшей мере на 80% соответствует последовательности 4. На второй стадии реакции субстрат представляет собой реакционный раствор, содержащий продукт дулькозид А, полученный на первой стадии реакции, UDP-гликозилтрансфераза представляет собой UGT-A из Stevia rebaudiana, а последовательность аминокислот UGT-А из Stevia rebaudiana по меньшей мере на 80% соответствует последовательности 2.

В соответствии с другим аспектом настоящего изобретения субстрат представляет собой дулькозид А, UDP-гликозилтрансфераза представляет собой UGT-A из Stevia rebaudiana, а последовательность аминокислот UGT-A из Stevia rebaudiana по меньшей мере на 80% соответствует последовательности 2.

В сравнении с предшествующим уровнем техники настоящее изобретение в результате применения вышеописанного технического решения обладает следующими преимуществами.

Предложенный в настоящем изобретении способ получения ребаудиозида С с применением ферментативного способа имеет важное прикладное значение. Поскольку скорость роста микроорганизмов значительно выше, чем скорость роста растений, путем применения предложенного в настоящем изобретении способа можно значительно снизить производственные затраты, сократить производственный цикл и значительно улучшить конкурентоспособность продукта. Кроме того, поскольку содержание стевиозидов в растениях невелико и существует много стевиозидов с различными структурами, экстрагировать чистые продукты очень сложно. По сравнению с существующими способами экстракции ребаудиозида С из листьев Stevia rebaudiana путем применения способа с использованием предложенного в настоящем изобретении ферментативного способа можно обеспечить продукты более высокой чистоты. Таким образом, продукты могут быть более экономично использованы в пищевой промышленности, например в производстве напитков. Кроме того, объем применения ребаудиозида С будет дополнительно расширен.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Структурные формулы рубузозида, дулькозида А и ребаудиозида С соответственно представлены формулами I, II и III.

В настоящем изобретении в основном предложены два пути синтеза ребаудиозида С.

Первый путь:

Второй путь:

UGT-A или UGT-B, применяемые в настоящем изобретении, могут существовать в форме порошка лиофилизированного фермента или в рекомбинантных клетках.

Способ получения UGT-A или UGT-B описан ниже.

Рекомбинантный штамм Escherichia coli (или другой микроорганизм) для экспрессии UGT-A или UGT-B получают с использованием методов молекулярного клонирования и генной инженерии; затем рекомбинантную Escherichia coli ферментируют для получения рекомбинантных клеток, содержащих UGT-A или UGT-B, или получают лиофилизированный порошок UGT-A или UGT-B из рекомбинантных клеток.

Метод молекулярного клонирования и метод генной инженерии, описанные в настоящем документе, являются известными, если не указано иное. Метод молекулярного клонирования см. в руководстве Molecular Cloning: A Laboratory Manual (3rd Edition) (J. Sambrook, 2005).

Стадии экспрессии описанного в настоящем документе рекомбинантного штамма, сконструированного методом генной инженерии, описаны ниже.

(1) (В соответствии с последовательностями 1 и 2, как показано в перечне последовательностей, или в соответствии с последовательностями 3 и 4) необходимые фрагменты генов генетически синтезируют, соединяют с вектором pUC57 и присоединяют сайты расщепления рестрикционных ферментов NdeI и BamHI с обоих концов;

(2) Каждый фрагмент гена встраивают в сайт соответствующего рестрикционного фермента экспрессионного вектора рЕТ30а посредством двойного ферментативного расщепления и соединения так, чтобы каждый ген помещался под контроль промотора Т7;

(3) Рекомбинантные плазмиды трансформируют в Escherichia coli BL21 (DE3) и индуцируют экспрессию целевого белка с помощью ИПТГ для получения рекомбинантного штамма Escherichia coli для экспрессии UGT-A или UGT-B.

Рекомбинантные клетки, содержащие UGT-A или UGT-B, или лиофилизированный порошок UGT-A или UGT-B получают с использованием рекомбинантного штамма Escherichia coli для экспрессии, содержащего UGT-A или UGT-B.

Рекомбинантный штамм Escherichia coli для экспрессии, содержащий UGT-A или UGT-B, инокулируют в 4 мл жидкой культуральной среды Лурия - Бертани (LB) в соответствии с долей 1%, проводят культивирование при встряхивании при 37°С (200 об/мин) в течение одной ночи, выдержанную в течение одной ночи культуру переносят в 50 мл жидкой культуральной среды LB в соответствии с количеством инокулята 1%, проводят культивирование при встряхивании при 37°С (200 об/мин) до достижения значения OD600 0,6-0,8, добавляют ИПТГ в конечной концентрации 0,4 ммоль/л и проводят культивирование при встряхивании при 20°С в течение одной ночи. После индукции клетки собирают центрифугированием (8000 об/мин, 10 мин), клетки ресуспендируют в 5 мл фосфатного буферного раствора 2 ммоль/л (рН 7,0) для выделения рекомбинантных клеток, клетки дополнительно разрушают ультразвуком на ледяной бане, жидкость, содержащую разрушенные клетки, центрифугируют (8000 об/мин, 10 мин), и супернатант собирают и лиофилизируют в течение 24 ч с выделением лиофилизированного порошка.

Настоящее изобретение будет дополнительно подробно описано ниже на конкретных примерах.

Пример 1. Получение рекомбинантных клеток Escherichia coli. содержащих UGT-A

В соответствии с последовательностями 1 и 2, как показано в перечне последовательностей, генные фрагменты, содержащие UGT-A, генетически синтезировали, присоединяли сайты рестрикционных ферментов NdeI и BamHI с обоих концов и соединяли с вектором pUC57 (производства компании SUZHOU GENEWIZ BIOTECHNOLOGY CO., LTD). Генные фрагменты UGT расщепляли с применением рестрикционных ферментов NdeI и BamHI, очищенные фрагменты восстанавливали и добавляли лигазу Т4 для соединения фрагментов с сайтами соответствующих рестрикционных ферментов рЕТ30а с целью ее трансформации в штамм BL21 (DE3).

Содержащий UGT штамм инокулировали в 4 мл жидкой культуральной среды LB в соответствии с долей 1%, проводили культивирование при встряхивании при 37°С (200 об/мин) в течение одной ночи, выдержанную в течение одной ночи культуру переносили в 50 мл жидкой культуральной среды LB в соответствии с количеством инокулята 1%, проводили культивирование при встряхивании при 37°С (200 об/мин) до достижения значения OD600 0,6-0,8, добавляли ИПТГ в конечной концентрации 0,4 ммоль/л и проводили культивирование при встряхивании при 20°С в течение одной ночи. После индукции клетки собирали центрифугированием (8000 об/мин, 10 мин), и клетки ресуспендировали в 5 мл фосфатного буферного раствора 2 ммоль/л (рН 7,0) для выделения содержащих UGT-A рекомбинантных клеток для катализа.

Пример 2. Получение лиофилизированного порошка UGT-A

Содержащие UGT-A рекомбинантные клетки, полученные в примере 1, подвергали ультразвуковой обработке на ледяной бане, содержащую разрушенные клетки жидкость центрифугировали (8000 об/мин, 10 мин), и супернатант собирали и лиофилизировали в течение 24 ч с выделением лиофилизированного порошка UGT-A.

Пример 3. Получение рекомбинантных клеток Escherichia coli, содержащих UGT-B

В соответствии с последовательностями 3 и 4 генные фрагменты, содержащие UGT-В, генетически синтезировали, присоединяли сайты расщепления рестрикционных ферментов NdeI и BamHI с обоих концов и соединяли с вектором pUC57 (производства компании SUZHOU GENEWIZ BIOTECHNOLOGY CO., LTD). Генные фрагменты UGT расщепляли с применением рестрикционных ферментов NdeI и BamHI, очищенные фрагменты восстанавливали и добавляли лигазу Т4 для соединения фрагментов с сайтами соответствующих рестрикционных ферментов рЕТ30а с целью ее трансформации в штамм BL21 (DE3).

Штамм UGT, инокулировали в 4 мл жидкой культуральной среды Лурия-Бертани (LB) в соответствии с долей 1%, проводили культивирование при встряхивании при 37°С (200 об/мин) в течение одной ночи, выдержанную в течение одной ночи культуру переносили в 50 мл жидкой культуральной среды LB в соответствии с количеством инокулята 1%, проводили культивирование при встряхивании при 37°С (200 об/мин) до достижения значения OD600 0,6-0,8, добавляли ИПТГ в конечной концентрации 0,4 ммоль/л и проводили культивирование при встряхивании при 20°С в течение одной ночи. После индукции клетки собирали центрифугированием (8000 об/мин, 10 мин), и клетки ресуспендировали в 5 мл фосфатного буферного раствора 2 ммоль/л (рН 7,0) для выделения содержащих UGT-B рекомбинантных клеток для катализа.

Пример 4. Получение лиофилизированного порошка из UGT-B

Содержащие UGT-B рекомбинантные клетки, полученные в примере 3, подвергали ультразвуковой обработке на ледяной бане, содержащую разрушенные клетки жидкость центрифугировали (8000 об/мин, 10 мин), и супернатант собирали и лиофилизировали в течение 24 ч с выделением лиофилизированного порошка UGT-B.

Пример 5. Синтез ребаудиозида С в условиях катализа UDP-гликозилтрансферазой с использованием дулькозида А в качестве субстрата (путь 1)

В данном примере для катализа синтеза ребаудиозида С использовали лиофилизированный порошок UGT-A, полученный в соответствии со способом, описанным в примере 2. В этом примере в качестве донора глюкозила использовали систему регенерации UDP-глюкозы, состоящую из сахарозы, синтазы сахарозы из Arabidopsis thaliana (далее именуемой AtSUS1) и UDP.

В реакционную систему последовательно добавляли 1 л фосфатного буферного раствора 0,05 моль/л (рН 8,0), 2 г UDP и 8 г дулькозида А, 50 г сахарозы, 10 г лиофилизированного порошка UGT-A и 3 г лиофилизированного порошка AtSUS1 и смешивали до однородного состояния, после чего смесь помещали на водяную баню при 40°С на 16 ч и проводили реакцию при перемешивании с частотой 300 об/мин. После проведения реакции отбирали 500 мкл реакционного раствора и смешивали до однородного состояния с безводным метанолом равного объема, проводили центрифугирование при 8000 об/мин в течение 10 мин, пропускали супернатант через фильтрующую мембрану, после чего проводили детектирование с помощью высокоэффективной жидкостной хроматографии (условия хроматографирования: хроматографическая колонка: Aglient eclipse SB-C18 4,6*150 мм; длина волны детектирования: 210 нм; подвижная фаза: 0,1% водный раствор муравьиной кислоты : ацетонитрил = 65% : 35%; объемный расход: 1,0 мл/мин; температура колонки: 30°С). Степень конверсии дулькозида А составила более 90%. После очистки супернатанта последующей обработкой, такой как разделение на силикагелевой смоле и кристаллизация, получили 5,6 г ребаудиозида С с чистотой более 90%.

Пример 6. Синтез ребаудиозида С в условиях катализа UDP-гликозилтрансферазой с использованием рубузозида в качестве субстрата (путь 2)

В данном примере для катализа синтеза ребаудиозида С использовали лиофилизированный порошок UGT-A, полученный в соответствии со способом, описанным в примере 2, и лиофилизированный порошок UGT-B, полученный в соответствии со способом, описанным в примере 4.

Первая стадия реакции: 1 л фосфатного буферного раствора 0,05 моль/л (рН 8,0), 4,5 г UDP-рамнозы, 6,5 г рубузозида и 10 г лиофилизированного порошка UGT-B последовательно добавляли в реакционную систему, смешивали до однородного состояния, а затем помещали на водяную баню при 40°С и проводили реакцию при перемешивании с частотой 300 об/мин в течение 16 ч. Вторая стадия реакции: после первой стадии реакции реакционный раствор кипятили в течение 10 мин, доводили рН до 8,0, добавляли 2 г UDP, 50 г сахарозы, 10 г лиофилизированного порошка UGT-A и 3 г лиофилизированного порошка AtSUS1, смешивали до однородного состояния, а затем помещали на водяную баню при 40°С и проводили реакцию при перемешивании с частотой 300 об/мин в течение 16 ч. После проведения реакции отбирали 500 мкл реакционного раствора и смешивали до однородного состояния с безводным метанолом равного объема, проводили центрифугирование при 8000 об/мин в течение 10 мин, пропускали супернатант через фильтрующую мембрану, после чего проводили детектирование с помощью высокоэффективной жидкостной хроматографии (условия хроматографирования: хроматографическая колонка: Aglient eclipse Cl8 4,6×150 мм; длина волны детектирования: 210 нм; подвижная фаза: 0,1% водный раствор муравьиной кислоты : ацетонитрил = 65%: 35%; объемный расход: 1,0 мл/мин; температура колонки: 30°С). Степень конверсии рубузозида составила более 90%. После очистки супернатанта последующей обработкой, такой как разделение на силикагелевой смоле и кристаллизация, получили 5,2 г ребаудиозида С с чистотой более 90%.

Пример 7. Синтез ребаудиозида С в условиях катализа рекомбинантными клетками, содержащими UDP-гликозилтрансферазу, с использованием дулькозида А в качестве субстрата

В данном примере для катализа синтеза ребаудиозида С использовали содержащие UGT-A рекомбинантные клетки, полученные в соответствии со способом примера 1.

1 л фосфатного буферного раствора 0,05 моль/л (рН 8,0), 2 г UDP, 8 г дулькозида А, 50 г сахарозы, 20 мл толуола, 40 г цельных клеток UGT-A и 12 г цельных клеток AtSUS1 последовательно добавляли в реакционную систему, смешивали до однородного состояния, а затем помещали на водяную баню при 40°С и проводили реакцию при перемешивании с частотой 300 об/мин в течение 16 ч. После проведения реакции отбирали 500 мкл реакционного раствора и центрифугировали, добавляли супернатант и смешивали до однородного состояния с безводным метанолом равного объема, проводили центрифугирование при 8000 об/мин в течение 10 мин, пропускали супернатант через мембрану фильтра, после чего проводили детектирование с помощью высокоэффективной жидкостной хроматографии (условия хроматографирования: хроматографическая колонка: Aglient eclipse SB-C18 4,6×150 мм; длина волны детектирования: 210 нм; подвижная фаза: 0,1% водный раствор муравьиной кислоты : ацетонитрил = 65%: 35%; объемный расход: 1,0 мл/мин; температура колонки: 30°С). Степень конверсии дулькозида А составила более 90%. После очистки супернатанта последующей обработкой, такой как разделение на силикагелевой смоле и кристаллизация, получили 5,5 г ребаудиозида С с чистотой более 90%.

Пример 8. Синтез ребаудиозида С в условиях катализа содержащими UDP-гликозилтрансферазу рекомбинантными клетками с использованием рубузозида в качестве субстрата

Первая стадия реакции: 1 л фосфатного буферного раствора 0,05 моль/л (рН 8,0), 4,5 г UDP-рамнозы, 6,5 г рубузозида, 20 мл толуола и 40 г цельных клеток UGT-A последовательно добавляли в реакционную систему, смешивали до однородного состояния, а затем помещали на водяную баню при 40°С и проводили реакцию при перемешивании с частотой 300 об/мин в течение 16 ч. Вторая стадия реакции: после первой стадии реакции реакционный раствор кипятили в течение 10 мин, доводили рН до 8,0, добавляли 2 г UDP, 50 г сахарозы, 40 г цельных клеток UGT-A и 12 г цельных клеток AtSUS1, смешивали до однородного состояния, а затем помещали на водяную баню при 40°С и проводили реакцию при перемешивании с частотой 300 об/мин в течение 16 ч. После проведения реакции отбирали 500 мкл реакционного раствора и центрифугировали, добавляли супернатант и смешивали до однородного состояния с безводным метанолом равного объема, проводили центрифугирование при 8000 об/мин в течение 10 мин, пропускали супернатант через мембрану фильтра, после чего проводили детектирование с помощью высокоэффективной жидкостной хроматографии (условия хроматографирования: хроматографическая колонка: Aglient eclipse SB-C18 4,6×150 мм; длина волны детектирования: 210 нм; подвижная фаза: 0,1% водный раствор муравьиной кислоты : ацетонитрил = 65%: 35%; объемный расход: 1,0 мл/мин; температура колонки: 30°С). Степень конверсии рубузозида составила более 90%. После очистки супернатанта последующей обработкой, такой как разделение на силикагелевой смоле и кристаллизация, получили 5,0 г ребаудиозида С с чистотой более 90%.

Описанные выше примеры приведены только для иллюстрации технической концепции и признаков настоящего изобретения. Их цель состоит только в том, чтобы дать возможность специалистам в данной области понять суть настоящего изобретения и реализовать его соответствующим образом, эти примеры не ограничивают объем настоящего изобретения; любые эквивалентные вариации или модификации, производные от сущности настоящего изобретения, входят в объем защиты настоящего изобретения.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 97.
10.07.2015
№216.013.6186

Охлаждаемая система выставления товара (варианты)

Изобретение относится к охлаждаемой системе выставления товара для хранения и выдачи товара и направлено на улучшение охлаждения внутреннего пространства системы. Система выставления товара содержит наружный корпус с верхней стенкой, нижней стенкой, двумя боковыми стенками и задней стенкой,...
Тип: Изобретение
Номер охранного документа: 0002556508
Дата охранного документа: 10.07.2015
20.08.2015
№216.013.701d

Модульная холодильная установка выкладки товаров

Заявлен способ транспортировки и сборки компонентов установки выкладки товаров, имеющей одну или более витрин. Компоненты установки выкладки товаров можно перевозить и принимать в месте торговли и можно класть горизонтально и укладывать в штабеля друг на друга во время транспортировки....
Тип: Изобретение
Номер охранного документа: 0002560271
Дата охранного документа: 20.08.2015
20.09.2015
№216.013.7da1

Модульная холодильная витринная система товаров

Изобретение относится к модульной холодильной витринной системе и направлено на увеличение угла обзора товара, расположенного внутри системы. Витринная система, содержащая один или большее число витринных блоков. Витринная система может содержать базовый блок, содержащий холодильную установку,...
Тип: Изобретение
Номер охранного документа: 0002563758
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7f84

Коацерватные комплексы, способы и пищевые продукты

Изобретение относится к пищевой промышленности. Водная дисперсия комплексных коацерватов, полученная способом, включающим: получение водного раствора по меньшей мере одного анионного полимера; добавление в водный раствор полимера водорастворимого антиоксиданта, стабилизатора, и по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002564241
Дата охранного документа: 27.09.2015
27.10.2015
№216.013.89d5

Предотвращение скопления частиц во время процессов стерилизации

Способ и устройство для стерилизации горячим заполнением или холодным заполнением контейнера, содержащего как жидкие, так и твердые включения. Каждое из способа и устройства предотвращают скопление включений в какой-либо области контейнера, такой как закрывающее средство контейнера, таким...
Тип: Изобретение
Номер охранного документа: 0002566888
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9059

Модульная система для розлива

Изобретение касается системы, включающей в себя модульную систему для розлива, по меньшей мере одну раздаточную головку на барной стойке, передаточный блок, находящийся на расстоянии от барной стойки, и трубопровод, идущий от передаточного блока к барной стойке. В одном аспекте передаточный...
Тип: Изобретение
Номер охранного документа: 0002568569
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.972c

Обработка целых или частей плодов рода genus musa и родственных видов

Изобретение относится к пищевой промышленности, а именно к способу получения бананового продукта. Получают, по меньшей мере, один неочищенный банан, включающий кожуру и пульпу банана. Проводят термообработку, по меньшей мере, одного неочищенного банана при температуре и в течение периода...
Тип: Изобретение
Номер охранного документа: 0002570320
Дата охранного документа: 10.12.2015
20.03.2016
№216.014.c81c

Способ создания пленочной подложки с покрытием (варианты)

Изобретение относится к полимерной пленке, поверхность которой покрыта слоем неорганического нанопокрытия, за счет чего обеспечиваются такие усовершенствования, как улучшенная способность к металлизации, низкая стоимость, низкое содержание полимерных добавок и модификаторов, более высокая...
Тип: Изобретение
Номер охранного документа: 0002578148
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cc8c

Система инкапсулирования для защиты пробиотиков во время обработки

Изобретение относится к пищевой промышленности. Описаны продукты, например продукты в виде напитка, содержащие по меньшей мере одну водную жидкость и капсулы, содержащие желатинированную смесь альгината и денатурированного белка и пробиотические бактерии, захваченные в этой желатинированной...
Тип: Изобретение
Номер охранного документа: 0002577980
Дата охранного документа: 20.03.2016
10.02.2016
№216.014.e875

Подсластители на основе ребаудиозида d и пищевые продукты, подслащенные ребаудиозидом d

Изобретение относится к пищевой промышленности. Предложенный газированный питьевой продукт типа кола содержит газированную воду, подкислитель, содержащий по меньшей мере одну кислоту, ребаудиозид D, имеющий чистоту 93 вес. % и обеспечивающий по меньшей мере 10% полного подслащивания питьевого...
Тип: Изобретение
Номер охранного документа: 0002575042
Дата охранного документа: 10.02.2016
Показаны записи 1-2 из 2.
16.06.2023
№223.018.79be

Способ получения ребаудиозида n с применением ферментативного способа

Изобретение относится к биотехнологии. Предложен способ получения ребаудиозида N с применением ферментативного способа, включающий использование ребаудиозида А или ребаудиозида J в качестве субстрата и получение субстрата в присутствии донора гликозила в реакции в условиях катализа...
Тип: Изобретение
Номер охранного документа: 0002737118
Дата охранного документа: 24.11.2020
16.06.2023
№223.018.7a05

Способ получения ребаудиозида j с применением ферментативного способа

Изобретение относится к области биотехнологии. Предложен способ получения ребаудиозида J с применением ферментативного способа, включающий использование ребаудиозида А в качестве субстрата и применение субстрата в присутствии донора рамнозила в реакции в условиях катализа содержащими...
Тип: Изобретение
Номер охранного документа: 0002736352
Дата охранного документа: 16.11.2020
+ добавить свой РИД