×
06.06.2023
223.018.78ec

Результат интеллектуальной деятельности: Термоэлектрический генератор с принудительной системой охлаждения

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам преобразования тепловой энергии в электрическую. Сущность: термоэлектрический генератор с принудительной системой охлаждения, преобразующий тепло уходящих газов тепловых установок, содержит термоэлектрические модули, количество которых зависит от величины требуемого напряжения и тока, пластину, прилегающую к наружной поверхности дымовой трубы. К пластине прикреплены охлаждающие радиаторы. Охлаждающие радиаторы системы охлаждения термоэлектрических модулей имеют принудительную систему охлаждения с датчиком температуры, блоком управления и рециркуляционным насосом. Составные части пластины закреплены на дымовой трубе, например, при помощи болтового соединения. Технический результат: повышение КПД за счет повышения эффективности работы системы охлаждения. 2 ил.

Изобретение относится к электрическим генераторам, а именно к устройствам по преобразованию тепловой энергии в электрическую с целью повышения энергетической эффективности тепловых источников.

Изобретение может найти широкое применение на предприятиях АПК, при утилизации тепла дымовых газов, тепла солнечных коллекторов, геотермальных источников, водной поверхности водоемов, рек, озер, морей, отдельных бытовых трубопроводов, дымоотводных труб и емкостей с горячей водой и другими теплоносителями, и служащего для электропитания светового освещения, средств связи, устройств оповещения и сигнализации, а также различных контрольно-измерительных приборов.

Известен термоэлектрический генератор (ТЭГ), содержащий теплоприемник, к которому с помощью прижимного блока крепятся термоэлектрические батареи и радиаторы (Патент РФ №2305347 от 27.08.2007, МПК H01L 35/30, опубл. 27.08.2007, бюл. №24).

Однако известное устройство имеет недостаток, который заключается в том, что имеет низкоэффективную систему охлаждения, что приводит к уменьшению КПД устройства.

Известен термоэлектрический генератор (Патент РФ №150186 от 10.02.2015, МПК H01L 35/28, опубл. 10.02.2015, бюл. №4), содержащий термоэлектрические модули (ТЭМ), установленные тепловоспринимающей стороной на боковой стороне корпуса отопительной бытовой печи, на противоположной стороне ТЭМ укрепляются воздушные радиаторы с естественной циркуляцией воздуха. Однако и данное устройство имеет свой недостаток, малоэффективную систему охлаждения, из-за чего охлаждающая сторона не успевает охлаждаться.

Технической задачей изобретения является улучшение системы охлаждения термоэлектрического генератора, что приводит к повышению термоэлектрического КПД устройства.

Техническая задача достигается тем, что в термоэлектрическом генераторе с принудительной системой охлаждения, преобразующем тепло уходящих газов тепловых установок, включающем в себя термоэлектрические модули, количество которых зависит от величины требуемого напряжения и тока, пластину для прилегания на наружной поверхности дымовой трубы, на которой установлен датчик температуры, подсоединенный к блоку управления, к термоэлектрическим модулям прикреплены охлаждающие радиаторы, охлаждающие радиаторы системы охлаждения термоэлектрических модулей имеют принудительную систему охлаждения с рециркуляционным насосом, причем блок управления регулирует скорость течения хладоносителя в системе охлаждения при помощи рециркуляционного насоса.

Предложенное устройство поясняется чертежами. На фиг. 1 представлен общий вид устройства, на фиг. 2 - вид сверху.

Термоэлектрический генератор с принудительной системой охлаждения, преобразующий тепло уходящих газов тепловых установок включает в себя термоэлектрические модули 1, количество которых зависит от величины требуемого напряжения и тока, пластину 2, прилегающую к наружной поверхности дымовой трубы 3. К пластине 2 прикреплены охлаждающие радиаторы 4. Охлаждающие радиаторы 4 системы охлаждения термоэлектрических модулей 1 имеют принудительную систему охлаждения 5 с рециркуляционным насосом 9 и блоком управления 8. Составные части пластины 2 закреплены на дымовой трубе 3, например, при помощи болтового соединения 6. На пластине 2 установлен датчик температуры 7, соединенный с блоком управления 8.

Термоэлектрический генератор с принудительной системой охлаждения работает следующим образом.

При прохождении дымовых газов по дымовой трубе 3, тепло передается через стенки пластине 2. Теплота поступает на горячую сторону термоэлектрического модуля 1. К пластине 2 крепится датчик температуры 7, сигнал от которого поступает на блок управления 8, который регулирует скорость течения хладоносителя в системе охлаждения 5 при помощи рециркуляционного насоса 9 для создания необходимой разности температур на стенках термоэлектрических модулей.

Пластина 2, изготовленная, например, из меди, обеспечивает низкое термическое сопротивление, что позволяет максимально эффективно подвести тепло к термоэлектрическому модулю 1 для дальнейшего получения электрической энергии постоянного тока с максимально возможным коэффициентом преобразования. Для повышения разницы температур между горячей и холодной поверхностями термоэлектрического модуля 1 и увеличения коэффициента преобразования тепловой энергии в электрическую энергию используется принудительная система охлаждения 5. Хладоноситель циркулирует по охлаждающим радиаторам 4. Данный термоэлектрический генератор можно установить на дымовые трубы различных размеров и форм.

Предлагаемая конструкция охлаждающих радиаторов будет обеспечивать более эффективную работу системы охлаждения для повышения КПД устройства. Для подтверждения утверждения о повышении КПД термоэлектрического генератора с принудительной системой охлаждения, с оценкой влияния на него различных факторов можно применить формулу расчета, предложенную А.Ф. Иоффе (Иоффе А.Ф. Полупроводниковые термоэлементы. М.-Л.: Изд-во АН СССР. 1960 г.; Термоэлектрические генераторы. М.: Атомиздат, 1976 г.).

Выражение для определения значения КПД

где T1 - температуры горячей стороны ТЭГ, т.е. температура дымовых газов, принимаем равной 120°С; (Особенности теплового и эксергетического расчета котлоагрегатов ТЭС: учебное пособие / Батухтин А.Г. Пинигин В.В. - Москва: Изд-во Академия Естествознания, 2013 г.).

T0 - температуры холодной стороны ТЭГ, принимаем равной температуре подпиточной воды T0 = 15°С; (СП 89.13330.2016 Котельные установки. Актуализированная редакция СНиП 11-35-76).

М - оптимальная для режима максимального КПД величина отношения полезной нагрузки к внутреннему сопротивлению ТЭГ, характеризующая меру необратимых потерь в термоэлементе.

где Z - добротность, комплексный критерий, определяющий качество применяемого термоэлектрического материала, К-1; Z = 0,0005 К-1 (Исследование основных характеристик термоэлектрического охладителя и генератора: лаб. практикум / В.Н. Белозерцев [и др.]. - Самара: Изд-во СГАУ, 2015 г.).

Первый множитель для определения КПД, как видно из (1), представляет собой термодинамический КПД обратимого процесса (цикл Карно), второй показывает снижение его в результате необратимых потерь на теплопроводность и джоулево тепло.

Первый множитель выражения (1) представляет собой КПД цикла Карно, который обозначим как ηк=(T1-T0)/T1=(120-15)/120=0,085, второй - как КПД термоэлектрического преобразования ηТП=(М-1)/(М+T0/T1)=(3,84-1)/(3,84+15/120)=0,71. Тогда для удобства анализа выражение для КПД ТЭГ запишем как произведение

Из (1) и (2) видно, что чем больше М по сравнению с единицей, т.е. чем больше Z и средняя температура холодного и горячего спаев 0,5(T1+T0), тем меньше необратимое снижение КПД. Повышение температуры горячих спаев и снижение ее на холодных спаях увеличивает КПД не только из-за увеличения КПД цикла Карно, но и в результате роста М при данном значении Z.

Так как предлагаемое устройство должно обеспечивать эффективную работу системы охлаждения 4, за счет принудительной циркуляции хладоносителя при помощи рециркуляционного насоса 9, то в выражении (3) необходимо также учесть КПД рециркуляционного насоса 9 и блока управления 8

где ηн - КПД рециркуляционного насоса системы охлаждения ТЭГ,

ηбу - КПД блока управления.

Для циркуляции хладоносителя используется маломощный рециркуляционный насос 9 с повторно-кратковременным режимом работы. Электропитание рециркуляционного насоса 9 и блока управления 8 осуществляется за счет энергии, полученной от ТЭГ.

Предлагаемое устройство обеспечивает высокоэффективную работу системы охлаждения, что приводит к повышению КПД устройства.

Термоэлектрический генератор с принудительной системой охлаждения, преобразующий тепло уходящих газов тепловых установок, включающий в себя термоэлектрические модули, количество которых зависит от величины требуемого напряжения и тока, пластину для прилегания на наружной поверхности дымовой трубы, на которой установлен датчик температуры, подсоединенный к блоку управления, к термоэлектрическим модулям прикреплены охлаждающие радиаторы, отличающийся тем, что охлаждающие радиаторы системы охлаждения термоэлектрических модулей имеют принудительную систему охлаждения с рециркуляционным насосом, причем блок управления регулирует скорость течения хладоносителя в системе охлаждения при помощи рециркуляционного насоса.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 45.
18.01.2019
№219.016.b0b4

Композиция для получения кисломолочного продукта

Изобретение относится к пищевой промышленности, в частности к молочной. Композиция состоит из молочной смеси, содержащей молоко коровье сырое, молоко кобылье сырое и молоко сухое обезжиренное и закваски. Компоненты используются в следующем соотношении на 1000 кг продукта (без учета потерь):...
Тип: Изобретение
Номер охранного документа: 0002677219
Дата охранного документа: 16.01.2019
24.01.2019
№219.016.b39d

Вибрационная центрифуга

Изобретение относится к устройствам для разделения суспензий на жидкую и твердую фазы при помощи центробежных сил, а именно к фильтрующим центрифугам с вибрационной выгрузкой осадка, и может быть использовано в химической, пищевой и других отраслях промышленности. Вибрационная центрифуга...
Тип: Изобретение
Номер охранного документа: 0002678008
Дата охранного документа: 22.01.2019
30.03.2019
№219.016.f9fe

Универсальный пневматический скарификатор

Универсальный пневматический скарификатор содержит два загрузочных бункера с дозаторами, вентилятор для подачи равномерного потока семян от дозаторов с помощью воздуха, скарифицирующую поверхность, приемный бункер с выгрузной горловиной, систему подачи рабочей жидкости. Последняя соединена с...
Тип: Изобретение
Номер охранного документа: 0002683484
Дата охранного документа: 28.03.2019
06.04.2019
№219.016.fdb6

Способ упрочнения лапы культиваторной

Изобретение может быть использовано при упрочнении и восстановлении лап культиваторов различного функционального назначения. Процесс упрочнения режущей части лап культиваторных происходит в два слоя. Первый слой получают путем нанесения на поверхность режущей части лапы обмазки, содержащей...
Тип: Изобретение
Номер охранного документа: 0002684127
Дата охранного документа: 04.04.2019
02.05.2019
№219.017.48a8

Виброцентробежный сепаратор

Изобретение относится к сепараторам, предназначенным для разделения преимущественно зерновых материалов, и может быть использовано в мукомольной, химической и других отраслях промышленности. Виброцентробежный сепаратор состоит из корпуса, рабочего органа, привода вращательного движения рабочего...
Тип: Изобретение
Номер охранного документа: 0002686760
Дата охранного документа: 30.04.2019
02.10.2019
№219.017.d0b5

Присадочная лента для электроконтактной приварки

Изобретение может быть использовано при восстановлении и упрочнении деталей электроконтактной приваркой стальных лент. Перпендикулярно стороне присадочной ленты, обращенной к наплавляемой детали, выполнены в продольном и поперечном направлениях глухие отверстия на глубину, равную толщине ленты....
Тип: Изобретение
Номер охранного документа: 0002700891
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d0f0

Присадка для электроконтактной приварки

Изобретение может быть использовано при восстановлении и упрочнении деталей электроконтактной приваркой стальных лент роликовым электродом. На стороне присадочной ленты, обращенной к наплавляемой детали, имеются выполненные в продольном и поперечном направлении рельефы в виде чередующихся...
Тип: Изобретение
Номер охранного документа: 0002700890
Дата охранного документа: 23.09.2019
02.11.2019
№219.017.ddab

Способ восстановления изношенных деталей электроконтактной приваркой металлической ленты

Изобретение относится к области контактной сварки и может быть использовано при восстановлении и упрочнении деталей электроконтактной приваркой стальных лент. Перед приваркой путем штамповки или каким-либо другим способом плоскую ленту гофрируют и придают ей волнообразную форму, включающую...
Тип: Изобретение
Номер охранного документа: 0002704950
Дата охранного документа: 31.10.2019
02.11.2019
№219.017.ddb6

Присадка для электроконтактной приварки

Изобретение относится к области контактной роликовой сварки и может быть использовано при нанесении покрытий из меди и сплавов на ее основе на детали из углеродистых сталей. Биметаллическое покрытие получают электроконтактной приваркой многослойной присадки, содержащей нижний слой из стальной...
Тип: Изобретение
Номер охранного документа: 0002704954
Дата охранного документа: 31.10.2019
04.11.2019
№219.017.de8f

Борона-лущильник

Борона-лущильник состоит из центральной рамы, имеющей продольные и поперечные брусья, диски. Оснащена гидроприводом перевода из рабочего в транспортное положение и обратно. Центральная рама, опирающаяся на поворотные транспортные колеса и выполненная с возможностью присоединения сницы с двух...
Тип: Изобретение
Номер охранного документа: 0002705005
Дата охранного документа: 01.11.2019
+ добавить свой РИД