×
04.06.2023
223.018.76b6

Результат интеллектуальной деятельности: Способ изготовления проволоки малого диаметра из титана и сплавов на его основе

Вид РИД

Изобретение

№ охранного документа
0002796651
Дата охранного документа
29.05.2023
Аннотация: Изобретение относится к области обработки металлов давлением, в частности к способам изготовления холоднодеформированной проволоки из титана и сплавов на его основе, используемой при сварке, а также в других областях промышленности. Способ изготовления проволоки из титана и сплавов на его основе включает получение предварительно деформированной заготовки для волочения, последовательно выполняемые циклы волочения с отжигами. Волочение осуществляют через твердосплавные или алмазные фильеры со значением коэффициента вытяжки между отжигами не более 1,50 с использованием в качестве смазочных материалов для волочения масел на минеральной или растительной основе. Промежуточные отжиги выполняют с остатками смазочных материалов на поверхности проволоки в атмосфере инертного газа или азота при температурах 650 – 750°С и выдержках не более 20 минут, образующиеся в ходе отжигов продукты термического разложения смазочных материалов на поверхности проволоки выступают в роли подсмазочного покрытия на следующем цикле волочения, после окончания волочения и достижения финишного размера выполняют обезжиривание и травление до полного удаления подсмазочного покрытия с поверхности проволоки. Обеспечивают получение проволоки из титана и сплавов на его основе с качественной и бездефектной поверхностью, с отсутствием газонасыщения металла в процессе обработки, с высокой точностью формы и размеров. 3 ил., 10 табл., 5 пр.

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления холоднодеформированной проволоки из титана и сплавов на его основе, используемой при сварке, а также в других областях промышленности: изготовлении элементов различных конструкций, медицине.

На сегодняшний день существует несколько способов волочения проволоки из титана и сплавов на его основе. Наиболее распространённым способом волочения является волочение через стальные, твёрдосплавные или алмазные фильеры. Преимуществом данного способа является простота и низкая стоимость изготовления инструмента (фильеры). Недостатком данного способа при обработке титана и его сплавов являются высокие значения силы трения на поверхности контакта металла с инструментом. Силы трения могут достигать 30% от общего усилия волочения. Высокие силы трения повышают необходимое усилие для волочения, ухудшают качество поверхности проволоки, повышают износ инструмента, снижают производительность. Это вызывает необходимость подбора специальных смазок и подсмазочных покрытий. Для снижения сил трения при волочении титана и сплавов на его основе через фильеры используют различные смазочные материалы, содержащие такие компоненты как графит, серу, дисульфид молибдена, натуральный воск. Чаще всего при волочении титана и сплавов на его основе используют аквадаг - водную суспензию графита (Ерманок М.З. Волочение цветных металлов и сплавов: учебник для ПТУ/ Ватрушин Л.С. - Москва: Металлургия, 1988 - c. 288). Недостатком некоторых компонентов таких смазок, например графита, является трудность отмывки от него оборудования, одежды, кожи.

Для эффективного использования смазочных материалов при волочении через фильеры титана и его сплавов требуются подсмазочные покрытия, например, оксидная или фосфатная плёнки. Это вызывает необходимость в дополнительных операциях и оборудовании для нанесения на проволоку таких покрытий, и последующего их удаления. Кроме того, из-за высокой склонности титана к налипанию на инструмент, даже при использовании специальных смазочных материалов и подсмазочных покрытий периодически происходят налипания металла на рабочую поверхность фильер, приводящие к поверхностным дефектам: задирам проволоки и её обрывам.

Существует несколько способов близких по своей сути к заявляемому техническому решению.

Одним из аналогов является способ получения проволоки из β-титанового сплава с высоким сопротивлением на разрыв и усталостной прочностью, представленный в патенте JPH 0261042 (C22F1/00; C22F1/18, 01.03.1990), где предложен отжиг в окислительной атмосфере, например, на воздухе, при температурах не ниже 600°С, но не выше температуры полного полиморфного превращения (температура полиморфного превращения β-титановых сплавов, как правило, составляет 700-750°С) для создания на поверхности проволоки оксидной плёнки толщиной от 0,1 до 3,0 мкм. Недостатком указанного способа является неизбежное насыщение приповерхностного слоя проволоки кислородом и водородом, происходящее при отжиге в окислительной атмосфере, параллельно с возникновением оксидной плёнки. Газонасыщенный слой на титане и сплаве на его основе обладает низкой технологичностью и при последующей обработке давлением является причиной зарождения поверхностных дефектов: трещин напряжения, надрывов, обрывов и т.п.

Другой близкий способ получения проволоки из β-титанового сплава с хорошей размерной точностью и качеством поверхности - патент JPS 62149859 (C22F1/00; C22F1/18; C23C8/80, 03.07.1987), в котором для исключения налипания металла на инструмент в процессе волочения в качестве подсмазочного покрытия также применяют оксидную плёнку. При этом предложен двухстадийный отжиг перед финишным волочением. Первая стадия - в атмосфере воздуха при температурах от 400 до 650°С в течение от 1 минуты до 1 часа - для создания оксидной плёнки на поверхности проволоки. Вторая стадия - нагрев в вакууме или инертной среде до температуры полиморфного превращения или выше, выдержка в течение от 5 до 60 минут и охлаждением со скоростью не ниже 1,8 градусов в минуту - для фиксирования в материале высокотемпературной β-фазы, обладающей лучшей технологичностью по сравнению с низкотемпературной α-фазой при обработке давлением.

Недостатком является необходимость нагрева в вакууме или защитной среде с возможностью ускоренного охлаждения, что достаточно труднореализуемо на промышленном термическом оборудовании.

Наиболее близким к заявляемому способу является способ получения высокопрочной проволоки из (α+β)-титанового сплава мартенситного класса, представленный в патенте RU 2460825 (С22F 1/18, B21B 3/00, 10.09.2012). В данном способе для изготовления проволоки предлагается использовать холодное волочение с промежуточными отжигами в атмосфере воздуха, при этом после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 мин при температуре (0,5-0,7)Тпп (Тпп - температура полного полиморфного превращения) с дальнейшим охлаждением до комнатной температуры. Оксидная пленка, образующаяся в результате промежуточных отжигов в атмосфере воздуха выступает в роли подсмазочного покрытия при волочении.

Недостатком указанного способа является газонасыщение приповерхностного слоя проволоки кислородом и водородом, происходящее при окислительном отжиге, параллельно с возникновением оксидной плёнки. Это особенно критично при многократных циклах «отжиг-волочение», а также для проволоки малых диаметров, обладающей большой удельной поверхностью.

Повышенное содержание кислорода и водорода в проволоке вызывает недопустимое снижение технологичности - охрупчиванию, и, как правило, приводит к поверхностным дефектам: трещинам, надрывам и обрывам.

Задача, на решение которой направлено заявляемое изобретение, заключается в получении проволоки из титана и сплавов на его основе с качественной и бездефектной поверхностью, с отсутствием газонасыщения металла в процессе обработки, с высокой точностью формы и размеров.

Техническим результатом, обеспечивающим решение поставленной задачи, является способ изготовления проволоки малого диаметра из титана и сплавов на его основе, включающий получение предварительно деформированной заготовки для волочения, последовательно выполняемые циклы волочения с отжигами отличающийся тем, что волочение осуществляют через твердосплавные или алмазные фильеры со значением коэффициента вытяжки между отжигами не более 1,50 с использованием в качестве смазочных материалов для волочения масел на минеральной или растительной основе, при этом промежуточные отжиги выполняют с остатками смазочных материалов на поверхности металла в инертной атмосфере при температурах от 650-750°С и выдержках не более 20 минут, а образующиеся в ходе отжигов продукты термического разложения смазочных материалов на поверхности металла, выступают в роли подсмазочного покрытия на следующем цикле волочения. По окончании волочения и достижения финишного размера выполняют обезжиривание и травление до полного удаления остатков подсмазочного покрытия с поверхности проволоки. Отсутствие газонасыщения обрабатываемого металла достигается выполнением промежуточных отжигов в инертной атмосфере, без доступа воздуха. Высокая точность формы и размеров проволоки достигается использованием твердосплавных или алмазных фильер. В качестве смазок рекомендуем использовать масла на минеральной или растительной основе, как наиболее дешёвые и доступные.

Реализация способов изготовления проволоки из титана и сплавов на его основе по прототипу и заявляемым способом:

Пример 1. Изготовление проволоки диаметром 0,75 мм сплава ВТ16 из проволоки диаметром 1,00 мм по прототипу

Маршрут изготовления проволоки приведён в таблице 1. В качестве исходной заготовки использовали проволоку диаметром 1,00 мм, изготовленную волочением на кассетах с промежуточными отжигами в вакууме. Волочение проводили через твердосплавные фильеры с отжигами на размерах 1,00; 0,92; 0,87; 0,80 и 0,75 мм в атмосфере воздуха. Налипания металла на фильеры в процессе волочения не зафиксировано.

Таблица 1 - Маршрут изготовления проволоки диаметром 0,75 мм из сплава ВТ16
Номер прохода при волочении Диаметр до, мм Диаметр после, мм Коэффициент вытяжки
отжиг в атмосфере воздуха 630°C - 15 минут
1 1,00 0,92 1,09
отжиг в атмосфере воздуха 630°C - 15 минут
2 0,92 0,87 1,09
отжиг в атмосфере воздуха 630°C - 15 минут
3 0,87 0,80 1,07
отжиг в атмосфере воздуха 630°C - 15 минут
4 0,80 0,75 1,05
отжиг в атмосфере воздуха 450°C - 90 минут

В результате металлографических исследований установили, что на поверхности полученной проволоки диаметром 0,75 мм сплава ВТ16 есть прерывистая, неравномерная по толщине оксидная плёнка толщиной до 32 мкм, присутствовали поверхностные дефекты - микротрещин (фиг. 1).

Для оценки величины газонасыщения металла проволоки в ходе отжигов выполнили анализ содержания кислорода и водорода на начальном, промежуточном и конечном размерах - таблица 2.

Таблица 2 - содержание кислорода и водорода в проволоке диаметром 0,75 мм из сплава ВТ16
Размер, мм Кислород, мас.% Водород, мас.%
1,00 0,132 0,010
0,87 0,407 0,102
0,75 0,790 0,128
Требования ОСТ 1 90013-81 ≤ 0,15 ≤ 0,012

Таким образом, при изготовлении проволоки по прототипу, происходит образование оксидной плёнки, возникновение поверхностных дефектов - микротрещин, и недопустимое увеличение содержания кислорода и водорода в металле.

Пример 2. Изготовление проволоки диаметром 0,70 мм сплава ВТ16 из проволоки диаметром 1,0 мм заявляемым способом

Маршрут изготовления проволоки приведён в таблице 3. В качестве исходной заготовки использовали проволоку диаметром 1,00 мм, изготовленную волочением на кассетах с промежуточными отжигами в вакууме. Волочение проводили через твердосплавные и алмазные фильеры с использованием смазочного материала «Вапор» на основе минерального масла. Все промежуточные отжиги выполняли в инертной атмосфере. Для создания инертной атмосферы использовали азот. Налипания металла на фильеры в процессе волочения не зафиксировали. На готовом размере выполнили обезжиривание и травление проволоки в азотно-плавиковом растворе кислот со съёмом 20-40 мкм для удаления подсмазочного слоя.

Таблица 3 - Маршрут изготовления проволоки диаметром 0,70 мм из сплава ВТ16
Номер прохода при волочении Диаметр до, мм Диаметр после, мм Коэффициент вытяжки
отжиг в атмосфере азота 710°C - 7 минут
1 1,00 0,96 1,09
отжиг в атмосфере азота 710°C - 7 минут
2 0,96 0,92 1,09
3 0,92 0,89 1,07
отжиг в атмосфере азота 710°C - 5 минут
4 0,89 0,87 1,05
5 0,87 0,84 1,07
отжиг в атмосфере азота 710°C - 5 минут
6 0,84 0,80 1,10
7 0,80 0,76 1,14
отжиг в атмосфере азота 710°C - 4 минут
8 0,76 0,72 1,11
отжиг в атмосфере азота 710°C - 4 минут
Травление в размер (0,70±0,01) мм со съёмом 20-40 мкм

В результате металлографических исследований установили, что на поверхности проволоки, изготовленной заявляемым способом, отсутствует оксидная плёнка и поверхностные дефекты, имеются отдельные риски глубиной примерно 10 мкм с пологими краями (фиг. 2).

Для оценки величины газонасыщения металла проволоки диаметром 0,70 мм сплава ВТ16 в ходе отжигов выполнили анализ содержания кислорода и водорода на начальном, промежуточном и конечном размерах - таблица 4.

Таблица 4 - содержание кислорода и водорода в проволоке 0,70 мм из сплава ВТ16
Размер, мм Кислород, мас.% Водород, мас.%
1,00 0,132 0,009
0,84 0,132 0,008
0,70 0,138 0,010
Требования ОСТ 1 90013-81 ≤ 0,15 ≤ 0,012

Таким образом, при изготовлении проволоки диаметром 0,70 мм сплава ВТ16 по заявляемому способу значимого увеличения содержания кислорода и водорода в готовой проволоке по сравнению с исходной заготовкой диаметром 1,00 мм не происходит. Волочение возможно через твёрдосплавные или алмазные фильеры с использованием смазки на основе минерального масла.

Пример 3. Изготовление проволоки диаметром 0,60 мм из проволоки диаметром 1,6 мм сплава ВТ6

Маршрут изготовления проволоки приведён в таблице 5.

В качестве исходной заготовки использовали проволоку диаметром 1,60 мм, изготовленную волочением на кассетах с промежуточными отжигами в вакууме. Волочение проводили через твердосплавные и алмазные фильеры с использованием смазки на основе касторового (растительного) масла. Все промежуточные отжиги выполняли в защитной атмосфере. Для создания инертной атмосферы использовали азот. Налипания металла на фильеры в процессе волочения не зафиксировали. На готовом размере выполнили обезжиривание и травление проволоки в азотно-плавиковом растворе кислот со съёмом 40-50 мкм для удаления остатков смазки и подсмазочного слоя.

Таблица 5 - Маршрут изготовления проволоки диаметром 0,60 мм из сплава ВТ6
Номер прохода при волочении Диаметр до, мм Диаметр после, мм Коэффициент вытяжки
отжиг в атмосфере азота 710°C - 10 минут
1 1,6 1,47 1,18
отжиг в атмосфере азота 710°C - 10 минут
2 1,47 1,30 1,28
отжиг в атмосфере азота 710°C - 8 минут
3 1,30 1,15 1,28
отжиг в атмосфере азота 710°C - 8 минут
4 1,15 1,04 1,22
отжиг в атмосфере азота 710°C - 7 минут
5 1,04 0,92 1,28
отжиг в атмосфере азота 710°C - 7 минут
6 0,92 0,82 1,26
отжиг в атмосфере азота 710°C - 5 минут
7 0,82 0,72 1,30
отжиг в атмосфере азота 710°C - 5 минут
8 0,72 0,65 1,23
отжиг в атмосфере азота 710°C - 4 минут
Травление в размер (0,60±0,01) мм со съёмом 40-50 мкм

В результате металлографических исследований установили, что на поверхности проволоки отсутствует оксидная плёнка и поверхностные дефекты в виде трещин и надрывов. Имеются отдельные продольные риски глубиной не более 0,01 мм (фиг. 3).

Для оценки величины газонасыщения металла проволоки диаметром 0,60 мм сплава ВТ6 в ходе отжигов выполнили анализ содержания кислорода и водорода на начальном и конечном размерах - таблица 6.

Таблица 6 - содержание кислорода и водорода в проволоке диаметром 0,60 мм из сплава ВТ6
Размер, мм Кислород, % масс. Водород, % масс
1,60 0,06 0,004
0,60 0,06 0,005
Требования ОСТ 1 90013-81 ≤ 0,20 ≤ 0,015

Таким образом, при изготовлении проволоки диаметром 0,60 мм сплава ВТ6 по заявляемому способу значимого увеличения содержания кислорода и водорода в готовой проволоке по сравнению с исходной заготовкой диаметром 1,60 мм не происходит. Волочение возможно через твёрдосплавные или алмазные фильеры с использованием смазки на основе минерального масла.

Пример 4. Изготовление проволоки диаметром 0,40 мм из проволоки диаметром 0,80 мм сплава ВТ1-00св

Маршрут изготовления проволоки приведён в таблице 7.

В качестве исходной заготовки использовали проволоку диаметром 0,80 мм, изготовленную волочением на кассетах с промежуточными отжигами в инертной среде. Волочение проводили через твердосплавные и алмазные фильеры с использованием смазки «Вапор» на основе минерального масла. Все промежуточные отжиги выполняли в защитной атмосфере. Для создания инертной атмосферы использовали азот. Налипания металла на фильеры в процессе волочения не зафиксировали. На готовом размере выполнили обезжиривание и травление проволоки в азотно-плавиковом растворе кислот со съёмом 50-60 мкм для удаления остатков смазки и подсмазочного слоя.

Таблица 7 - Маршрут изготовления проволоки диаметром 0,40 мм из сплава ВТ1-00св
Номер прохода при волочении Диаметр до, мм Диаметр после, мм Коэффициент вытяжки
отжиг в атмосфере азота 650°C - 5 минут
1 0,80 0,7 1,31
отжиг в атмосфере азота 650°C - 5 минут
2 0,70 0,61 1,32
отжиг в атмосфере азота 650°C - 4 минуты
3 0,61 0,56 1,19
отжиг в атмосфере азота 650°C - 4 минуты
4 0,56 0,51 1,21
отжиг в атмосфере азота 650°C - 3 минуты
5 0,51 0,46 1,23
Травление в размер (0,40±0,01) мм со съёмом 50-60 мкм
отжиг в вакууме 700°C - 120 минут

В результате металлографических исследований установили, что на поверхности проволоки отсутствует оксидная плёнка и поверхностные дефекты.

Для оценки величины газонасыщения металла проволоки диаметром 0,40 мм сплава ВТ1-00св в ходе отжигов выполнили анализ содержания кислорода и водорода на начальном и конечном размерах - таблица 8.

Таблица 8 - содержание кислорода и водорода в проволоке диаметром 0,40 мм из сплава ВТ1-00св
Размер, мм Кислород, % масс. Водород, % масс
0,80 0,08 0,001
0,40 0,08 0,001
Требования ГОСТ 27265-87 ≤ 0,12 ≤ 0,003

Таким образом, при изготовлении проволоки диаметром 0,40 мм сплава ВТ1-00св по заявляемому способу увеличения содержания кислорода и водорода в готовой проволоке по сравнению с исходной заготовкой диаметром 0,8 мм не происходит. Волочение возможно через твёрдосплавные или алмазные фильеры с использованием смазки на основе минерального масла.

Пример 5. Изготовление проволоки диаметром 0,40 мм из проволоки диаметром 0,80 мм сплава ВТ20-1св

Маршрут изготовления проволоки приведён в таблице 9.

В качестве исходной заготовки использовали проволоку диаметром 0,80 мм, изготовленную волочением на кассетах с промежуточными отжигами в инертной среде. Волочение проводили через твердосплавные и алмазные фильеры с использованием смазки «Вапор» на основе минерального масла. Все промежуточные отжиги выполняли в защитной атмосфере. Для создания инертной атмосферы использовали азот. Налипания металла на фильеры в процессе волочения не зафиксировали. На готовом размере выполнили обезжиривание и травление проволоки в азотно-плавиковом растворе кислот со съёмом 50-60 мкм для удаления остатков смазки и подсмазочного слоя.

Таблица 9 - Маршрут изготовления проволоки диаметром 0,40 мм из сплава ВТ20-1св
Номер прохода при волочении Диаметр до, мм Диаметр после, мм Коэффициент вытяжки
отжиг в атмосфере азота 700°C - 6 минут
1 0,80 0,7 1,31
отжиг в атмосфере азота 700°C - 6 минут
2 0,70 0,61 1,32
отжиг в атмосфере азота 700°C - 5 минут
3 0,61 0,56 1,19
отжиг в атмосфере азота 700°C - 5 минут
4 0,56 0,51 1,21
отжиг в атмосфере азота 700°C - 4 минуты
5 0,51 0,46 1,23
Травление в размер (0,40±0,01) мм со съёмом 50-60 мкм
отжиг в вакууме 700°C - 120 минут

В результате металлографических исследований установлено, что на поверхности проволоки отсутствует оксидная плёнка и поверхностные дефекты.

Для оценки величины газонасыщения металла проволоки диаметром 0,40 мм сплава ВТ20-1св в ходе отжигов выполнили анализ содержания кислорода и водорода на начальном и конечном размерах - таблица 10.

Таблица 10 - содержание кислорода и водорода в проволоке диаметром 0,40 мм из сплава ВТ20-1св
Размер, мм Кислород, мас.% Водород, мас.%
0,80 0,07 0,001
0,40 0,07 0,001
Требования ГОСТ 27265-87 ≤ 0,12 ≤ 0,003

Таким образом, при изготовлении проволоки диаметром 0,40 мм сплава ВТ20-1св по заявляемому способу увеличения содержания кислорода и водорода в готовой проволоке по сравнению с исходной заготовкой диаметром 0,8 мм не происходит. Волочение возможно через твёрдосплавные или алмазные фильеры с использованием смазки на основе минерального масла.

Допускается изготовление проволоки из титана или других сплавов на его основе с другими диаметрами и по другому маршруту, но в рамках заявляемого способа.

Способ изготовления проволоки из титана и сплавов на его основе, включающий получение предварительно деформированной заготовки для волочения, последовательно выполняемые циклы волочения с отжигами, отличающийся тем, что волочение осуществляют через твердосплавные или алмазные фильеры со значением коэффициента вытяжки между отжигами не более 1,50 с использованием в качестве смазочных материалов для волочения масел на минеральной или растительной основе, при этом промежуточные отжиги выполняют с остатками смазочных материалов на поверхности проволоки в атмосфере инертного газа или азота при температурах 650 – 750°С и выдержках не более 20 минут, образующиеся в ходе отжигов продукты термического разложения смазочных материалов на поверхности проволоки выступают в роли подсмазочного покрытия на следующем цикле волочения, после окончания волочения и достижения финишного размера выполняют обезжиривание и травление до полного удаления подсмазочного покрытия с поверхности проволоки.
Способ изготовления проволоки малого диаметра из титана и сплавов на его основе
Источник поступления информации: Роспатент

Показаны записи 1-10 из 20.
10.08.2016
№216.015.53c5

Способ получения слитков гафния вакуумно-дуговым переплавом

Изобретение относится к получению слитков гафния. Прессуют брикеты из шихтового гафниевого материала с плотностью брикета не менее ρ=7,2 г/см. Формируют расходуемый электрод путем электронно-лучевой сварки брикетов. Проводят первый вакуумно-дуговой переплав полученного расходуемого электрода с...
Тип: Изобретение
Номер охранного документа: 0002593807
Дата охранного документа: 10.08.2016
20.01.2018
№218.016.1415

Способ определения порога напряжений коррозионного растрескивания стали или сплава при постоянной деформации

Изобретение относится к исследованиям стойкости против коррозионного растрескивания под напряжением (КРН) сталей и сплавов в агрессивных средах в лабораторных и промышленных условиях и может быть использовано для определения значений порогов напряжений коррозионного растрескивания сталей и...
Тип: Изобретение
Номер охранного документа: 0002634800
Дата охранного документа: 03.11.2017
29.05.2018
№218.016.5578

Способ получения циркония электролизом расплавленного электролита (варианты)

Изобретение относится к области получения циркония электролизом расплавленного электролита. Проводят электролиз расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия и тетрафторида циркония при контроле количества электричества, температуры...
Тип: Изобретение
Номер охранного документа: 0002654397
Дата охранного документа: 17.05.2018
12.07.2018
№218.016.7041

Способ изготовления проволоки для обработки металлургических расплавов и проволока для обработки металлургических расплавов

Изобретение относится к области металлургии и может быть использовано при внепечной обработке расплавов чугуна или стали проволокой с различными активными компонентами. Способ включает изготовление кальцийсодержащей проволоки для обработки металлургических расплавов, содержащей герметичную...
Тип: Изобретение
Номер охранного документа: 0002660785
Дата охранного документа: 09.07.2018
17.11.2018
№218.016.9e64

Коррозионностойкий сплав

Изобретение относится к металлургии, к сплавам на никелевой основе, предназначенным для эксплуатации в агрессивных окислительных средах. Коррозионностойкий сплав содержит, мас. %: углерод ≤0,006, кремний ≤0,1, марганец ≤1,0, хром 22,8-24,0, железо ≤0,75, молибден 12,0-14,0, ниобий 0,01-0,03,...
Тип: Изобретение
Номер охранного документа: 0002672647
Дата охранного документа: 16.11.2018
31.05.2019
№219.017.7062

Способ очистки смеси тетрахлоридов циркония и гафния от примесей

Изобретение может быть использовано в качестве первой стадии очистки от примесей смеси тетрахлоридов циркония и гафния перед последующим разделением и получением чистых индивидуальных продуктов. Способ очистки смеси тетрахлоридов циркония и гафния от примесей включает операцию растворения...
Тип: Изобретение
Номер охранного документа: 0002689744
Дата охранного документа: 28.05.2019
04.07.2019
№219.017.a4e3

Проволока для ковшевой обработки стали

Изобретение относится к области металлургии и может быть использовано для ковшевой обработки стали. Проволока содержит металлическую оболочку и наполнитель на основе кальция с примесным содержанием магния. Наполнитель выполнен в виде однородного сплава, который дополнительно содержит по крайней...
Тип: Изобретение
Номер охранного документа: 0002693276
Дата охранного документа: 02.07.2019
05.07.2019
№219.017.a625

Способ многопроходной реверсивной винтовой прокатки прутков большого диаметра

Изобретение относится к области обработки металлов давлением и касается производства прутков круглого профиля диаметром 150-350 мм из металлов и сплавов. Способ включает многопроходную реверсивную винтовую прокатку в калибре, образованном тремя валками, развернутыми на угол подачи 18-25°,...
Тип: Изобретение
Номер охранного документа: 0002693418
Дата охранного документа: 02.07.2019
16.08.2019
№219.017.c058

Способ изготовления проволоки из высокопрочных сплавов на основе титана

Изобретение относится к области металлургии, в частности к обработке металлов давлением, и может быть использовано для получения проволоки из высокопрочных сплавов на основе титана. Способ получения заготовки сплавов включает получение слитка, его горячую деформацию под многократное волочение...
Тип: Изобретение
Номер охранного документа: 0002697309
Дата охранного документа: 13.08.2019
02.10.2019
№219.017.cfdc

Способ получения слитков из сплавов циркония на основе магниетермической губки

Изобретение относится к получению слитков из сплавов циркония на основе циркониевой магниетермической губки, содержащих легирующие элементы. Способ включает получение таблеток лигатуры, формирование расходуемых электродов и выплавку слитков. Таблетки лигатуры получают смешиванием и прессованием...
Тип: Изобретение
Номер охранного документа: 0002700892
Дата охранного документа: 23.09.2019
Показаны записи 1-4 из 4.
10.07.2015
№216.013.5f03

Система связи с высокой скоростью передачи информации сверхширокополосными сигналами

Изобретение относится к радиотехнике и может быть использовано в скоростных системах радиосвязи, использующих импульсные сверхширокополосные сигналы. Технический результат - повышение помехоустойчивости передачи информации в условиях интенсивных помех. Система связи с высокой скоростью передачи...
Тип: Изобретение
Номер охранного документа: 0002555864
Дата охранного документа: 10.07.2015
15.03.2019
№219.016.e083

Прибор для дневного и ночного наблюдения и прицеливания

Изобретение относится к оптическому приборостроению, в частности к оптическим системам наблюдения, измерения дальности до удаленных объектов и прицеливания различного вооружения. Прибор содержит головное зеркало с системой стабилизации и наведения линии визирования, оптически связанное с...
Тип: Изобретение
Номер охранного документа: 0002310219
Дата охранного документа: 10.11.2007
09.05.2019
№219.017.4963

Способ биотехнологического восстановления кожного покрова аллогенными стволовыми клетками человека

Изобретение относится к медицине, а именно к хирургии и комбустиологии. Выполняют раннюю хирургическую некрэктомию и одномоментную кожную пластику с пересадкой трансплантата. При этом вводят аллогенные адипогенные мезенхимальные стволовые клетки по периметру ожоговой раны и субфасциально под...
Тип: Изобретение
Номер охранного документа: 0002687007
Дата охранного документа: 06.05.2019
14.05.2023
№223.018.5524

Способ изготовления тонких листов из гафния с изотропными механическими свойствами

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления тонких листов из гафния с изотропными механическими свойствами в двух взаимно перпендикулярных направлениях, применяемых при создании сверхмощных магнитов постоянного типа, при изготовлении...
Тип: Изобретение
Номер охранного документа: 0002735842
Дата охранного документа: 09.11.2020
+ добавить свой РИД