×
02.06.2023
223.018.759b

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЧЕСКОГО ВЫДЕЛЕНИЯ ФИЗИОЛОГИЧЕСКИХ СОСТОЯНИЙ МЕЛКИХ ЛАБОРАТОРНЫХ ЖИВОТНЫХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к биомедицинским технологиям автоматической обработки сигналов электрической активности головного мозга, а именно к способам диагностики физиологических состояний животных. При этом регистрируют сигнал электрокортикограммы (ЭКоГ) и осуществляют его непрерывное вейвлетное преобразование. Определяют мгновенное распределение энергии вейвлетного спектра по временному масштабу в четырех частотных диапазонах f [2,5-4,5]; f [5-10]; f [10,5-12,5]; f [15-18] Гц. Рассчитывают усреднённые характеристики энергий , вейвлетного спектра. По общей длительности временного сигнала ЭКоГ автоматически рассчитывают пороговые значения 1, 2, 1, 2 усреднённых характеристик. Находят моменты пересечения порогов ε2, 1 характеристикой , по которым детектируют моменты начала состояний сна и бодрствования. Находят моменты пересечения порогов 1, 2 характеристикой , по которым диагностируют моменты начала и окончания состояния эпилептической активности. Обеспечивается расширение функциональных возможностей метода автоматической диагностики физиологических состояний (сна и бодрствования) и патологической активности (эпилептические разряды типа "пик-волна") на основе математического анализа ЭКоГ при ускорении за счет автоматизации процесса диагностики и повышения точности. 1 з.п. ф-лы, 5 ил.

Изобретение относится к биомедицинским технологиям автоматической обработки сигналов электрической активности головного мозга. Оно может быть использовано напрямую в экспериментальной нейрофизиологии для изучения и диагностики физиологической и патологической активности нервной системы у лабораторных животных (мышей, крыс) с использованием методов регистрации электроэнцефалограмм (ЭЭГ) и электрокортикограмм (ЭКоГ).

Точное и аккуратное выделение нормальных физиологических и патологических состояний у лабораторных животных остается важной задачей экспериментальной нейрофизиологии, поскольку активность головного мозга меняется под влиянием экспериментальных воздействий и при хроническом развитии болезней, особенно при прогрессирующем развитии неврологических расстройств (например, эпилепсия). Диагностика моментов засыпания, пробуждения, начала и окончания эпилептической активности позволяет исследовать тонкие изменения характеристик активности головного мозга, предшествующие или возникающие в различных физиологических состояниях животных, например, как в исследованиях (Bazilio, D.S., et. al. (2019). \\ Experimental physiology, 104(9), 1408-1419; Liu, Y., & Zhang, N. (2019). \\ Neuroimage, 202, 116176). Более того, подобные разработки могут быть использованы в качестве основы для устройств диагностики и контроля бодрствования операторов.

На сегодня существует ряд способов автоматической разметки (выделения) некоторых специфичных фаз колебательной активности на ЭЭГ (пик-волновые эпилептические разряды, сонные веретена) и использованы для диагностики заболеваний центральной нервной системы. Эти частные способы описаны, например, в (Sitnikova, E., Hramov, A.E., Grubov, V., & Koronovsky, A.A. (2014). Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain research, 1543, 290-299; Короновский А.А., Макаров В.А., Павлов А.Н., Ситникова Е.Ю., Храмов А.Е. Вейвлеты в нейродинамике и нейрофизиологии. М.: Физматлит. 2013, 272 с).

Способы автоматического выделения различных фаз сигналов разработаны как на основе систем искусственного интеллекта (см, патенты RU 2415642, МПК A61B 5/0476 опубл. 04.102011; RU 2709168, МПК G06K 9/62, опубл. 16.12.2019), так и на базе частотно-временного анализа (RU 2337610, МПК A61B 5/00, опубл. 10.11.2008).

В то же время задача диагностики физиологических состояний у лабораторных животных (сон, бодрствование) решаются путем ручной обработки записей видео- и электроэнцефалографического сигналов (Sitnikova, E., et. al. (2016). \\ Brain research bulletin, 120, 106-116), а также автоматизированными методами на базе использования дополнительной регистрации мышечной активности и\или глазодвигательной активности (Van Luijtelaar, E.L.J.M., & Coenen, A.M.L. (1984). \\ Physiology & behavior, 33(5), 837-841; Chapotot, F., & Becq, G. (2010). \\ International Journal of Adaptive Control and Signal Processing, 24(5), 409-423; Sugi, T., Kawana, F., & Nakamura, M. (2009). \\ Biomedical Signal Processing and Control, 4(4), 329-337). Необходимость синхронной регистрации видеографии или дополнительных сигналов значительно усложняет и удорожает процесс выполнения экспериментальных работ.

Наиболее близким к предлагаемому решению является способ выделения веретеноподобных паттернов по временным данным электроэнцефалограммы (ЭЭГ), предназначенный для выделения характерных фаз поведения биологических систем (см. патент на изобретение РФ 2565993, МПК A61B 5/0476, опубл. 20.10.2015). Согласно данному способу, регистрируют сигнал ЭЭГ и осуществляют непрерывное вейвлетное преобразование; определяют мгновенное и интегральное распределения энергии вейвлетного спектра по временным масштабам, которые соответствуют частотным диапазонам 5-9 Гц для веретеноподобных паттернов и 9-16 Гц для сонных веретен. В каждый момент времени определяют суммарное значение энергии вейвлетного спектра и на основании мгновенных распределений энергии вейвлетного спектра определяют фазы поведения системы таким образом, чтобы в одной из фаз на выбранные диапазоны временных масштабов приходилась большая часть энергии вейвлетного спектра; усредняют мгновенные распределения энергий вейвлетного спектра по интервалу времени в диапазоне 1-1.5 с, задают пороговые значения энергии и по значениям энергии вейвлетного спектра, приходящимся на диапазоны 5-9 Гц и 9-16 Гц, определяют веретеноподобные паттерны.

Недостатком данного способа является узкая область применения, так как он позволяет определить только моменты возникновения веретеноподобных паттернов и по их наличию выявить интервалы эпилептической активности. Необходимость расчета суммарного значения энергии вейвлетного спектра в значимом частотном спектре для каждого момента времени увеличивает время расчета. Кроме того, вручную задаваемые пороговые значения для каждого животного снижают точность и возможность использования метода в автоматическом режиме.

Технической проблемой изобретения является разработка метода автоматической диагностики физиологических состояний (сна и бодрствования) и патологической активности (эпилептические разряды типа "пик-волна") на основе математического анализа электрокортикограмм, зарегистрированных у лабораторных крыс в условиях свободного поведения.

Техническим результатом изобретения является расширение функциональных возможностей при ускорении за счет автоматизации процесса диагностики и повышении точности.

Технический результат достигается тем, что способе диагностики физиологических состояний животных, включающем регистрацию сигнала электрической активности головного мозга, осуществление его непрерывного вейвлетного преобразования и определение мгновенного распределения энергии вейвлетного спектра по временному масштабу в частотных диапазонах, диагностирование физиологического состояния по пороговым значениям характеристик энергий колебательной активности, согласно решению, в качестве сигнала х(t) регистрируют, по крайней мере, одну электрокортикограмму (ЭКоГ), мгновенное распределение энергии непрерывного вейвлетного преобразования определяют в четырех частотных диапазонах 2,5-4,5; 5-10; 10,5-12,5; 15-18 Гц, усредняют значения мгновенных энергий вейвлетного спектра в указанных частотных диапазонах во временном окне 0.5 с, рассчитывая усредненные характеристики энергий , ; по общей длительности временного сигнала ЭКоГ автоматически рассчитывают пороговые значения ε1, ε2, ε1sw, ε2sw усредненных характеристик усредненных характеристик по формулам:

где α1=1.3, α2=0.45, β1=1.75, β2=1.55, N - общее количество отсчетов в сигнале ЭКоГ, T - длительность сигнала ЭКоГ в секундах; находят моменты пересечения порогов ε2, ε1 характеристикой , по которым детектируют моменты начала состояний сна и бодрствования; находят моменты пересечения порогов характеристикой , по которым диагностируют моменты начала и окончания состояния эпилептической активности.

Дополнительно вводятся независимые ограничения для определяемых интервалов различных физиологических состояний. Состояние сна диагностируют на временном интервале Δts, на протяжении которого характеристика >ε2, состояние бодрствования диагностируют на временных интервалах Δta, на протяжении которого характеристика <ε2, длительность временных интервалов Δts и Δta ограничена снизу 10 с; состояние эпилептической активности диагностируют на временном интервале [] при выполнении условия , где характеристики и , рассчитываются по формулам:

;

,

где max(x(t)) и min(x(t)) - максимальные и минимальные экстремумы сигнала ЭКоГ x(t).

Для реализации данного способа разработаны новые принципы оптимизированного автоматического анализа электрокортикограмм, полученных с помощью эпидуральных электродов, вживленных в кости черепа над корой больших полушарий. Метод протестирован на электрокортикограммах, зарегистрированных в условиях свободного поведения у взрослых крыс с врожденной склонностью к развитию абсанс-эпилепсии. Способ исключает привлечения иных методов мониторинга (видеорегистрация или регистрация мышечной активности)

Изобретение поясняется чертежами. На фиг. 1-3 показаны примеры видео-регистрации электрокортикограмм у 9-месячной крысы линии WAG/Rij с генетической предрасположенностью к абсанс-эпилепсии: состояния сна фиг. 1, бодрствования фиг. 2 и эпилептической активности в виде пик-волнового разряда фиг. 3, которые были использованы нейрофизиологом для идентификации состояний. Справа показаны записи электрокортикографического сигнала в милливольтах, полученного от трех точек (каналов): двух симметричных областей левой и правой лобной коры (FrL и FrR соответственно) и затылочной коры справа (OcR). Размерность временной шкалы - мин:сек. На фиг. 4 представлен типичный фрагмент состояний сна (BS, серый цвет) и бодрствования (AW) по данным визуальной разметки нейрофизиолога с использованием видеорегистрации животного (а) и временной зависимости , рассчитанной по электрокортикографическому сигналу x(t), синхронному с видеорегистрацией, (б). Горизонтальными толстыми пунктирными линиями выделены пороговые значения ε1, ε2, пунктирные вертикальные линии демонстрируют результаты автоматической и ручной диагностики состояний сна и бодрствования. На фиг. 5 показаны типичные фрагменты состояний бодрствования (AW) и эпилептической активности (SW, серый цвет) выделенных нейрофизиологом с использованием видеорегистрации животного (с); временная зависимость , рассчитанная по электрокортикографическому сигналу x(t), (д); на вставке В показан временной интервал [2825, 2850] секунд сигнала x(t), где соответствующая точка на зависимости показана стрелкой, горизонтальными толстыми пунктирными линиями выделены пороговые значения ε1sw, ε2sw, пунктирные вертикальные линии демонстрируют сравнение автоматической и ручной диагностики состояний эпилептической активности на фоне бодрствования.

Заявляемое техническое решение осуществляется следующим образом.

С головного мозга снимают временной сигнал электрокортикограммы x(t) длительностью T с частотой дискретизации (1\N), т.е. при регистрации Tс в записи x(t) присутствует N отсчетов. Для сигнала x(t) выполняется стандартный расчет НВП W(x,t) согласно [Hramov A.E. et al. Wavelets in neuroscience. - Springer Berlin Heidelberg, 2015] c использованием Морле-вейвлета в качестве базисного с параметром Ω0=2π, обеспечивающим возможность при анализе использовать классические частоты f фурье-преобразования [Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М.: Физматлит, 2003].

В каждый момент времени t в каждом частотном диапазоне Δf1 [2,5; 4,5] Гц, Δf2 [5; 10] Гц, Δf3 [10,5; 12,5] Гц, Δf4 [15; 18] Гц рассчитываем сумму мгновенных энергий Е(f, t) НВП

Ограничение расчета мгновенной энергии исключительно в указанных частотных диапазонах позволяет снизить количество численных операций и затраты машинного времени при анализе сигнала.

Для каждого момента времени t0 рассчитаем характеристику , усредненную во временном окне Δt=0.5 с значение мгновенных энергий НВП в каждом частотном диапазоне Δf1-4:

где (t1=t0-0.5Δt), (t2=t0+0.5Δt).

Детектирование физиологических состояний сна и бодрствования проводится на основе анализа зависимости .

В случае наличия регистрации M сигналов ЭКоГ зависимость заменяем на аналогичную . Величины оцениваем для каждого регистрируемого сигнала x1(t)…xM(t). Зависимость рассчитываем согласно следующей формуле:

Использование большего числа ЭЭГ-записей позволяет повысить улучшить качество определения различных физиологических состояний животного.

Для каждого момента времени t0 вычислим для характеристики (2) усредненную характеристику во временном окне Δt=10 с:

где (t1=t0-0.5Δt), (t2=t0+0.5Δt).

Далее рассчитаем пороговые значения ε1 и ε2 по всей длительности T сигнала x(t):

где α1=1.3, α2=0.45. Пороговые значения ε1, ε2(5) являются индивидуальными для каждого животного.

Определим временные моменты t0=tz, в которые величина превышает пороговое значение ε1, т.е. (). Далее, находим ближайший временной момент t0=ts, ts<tz, в которых величина превосходит пороговое значение ε2, т.е., соотношение становится верным. Момент ts соответствует началу временного интервала сна животного. Моменты времени t0=ta, для которых соотношение становится верным, соответствуют моментам начала временного интервала бодрствования животного (и завершения интервала регистрации сна).

Состояние сна диагностируется на временном интервале Δts=[ts; ta] c, на протяжении которого величина непрерывно превосходит пороговое значение ε2.

Состояние бодрствования диагностируется на временных интервалах Δta=[ta; ts] c, на протяжении которого величина характеристики принимает значения ниже порогового ε2.

После диагностики состояний сна и бодрствования у животного по всей длительности сигнала ограничим снизу минимальную временную протяженность данных физиологических состояний пороговым значением T1=10 с. Если Δta<T1 или Δts<T1, то соответствующее физиологическое состояние считаем диагностированным ошибочно и оставляем неизменным диагностированное ранее по времени предыдущее физиологическое состояние.

Для детектирования состояния эпилептической активности определим характеристику согласно следующему соотношению

В случае наличия регистрации M сигналов характеристику заменяем на аналогичную . Величины оцениваем для каждого сигнала x1(t)…xM(t). Характеристику рассчитываем согласно следующей формуле:

Для каждого момента времени t0 рассчитаем характеристику , выполнив усреднение величины характеристики во временном окне 3 секунды:

где (t1=t0-1.5Δt), (t2=t0+1.5Δt), протяженность временного интервала Δt=3 с.

Далее введем пороговые значения ε1sw, ε2sw согласно следующим соотношениям, рассчитываемым для всей длительности T временного ряда x(t) электроэнцефалограммы:

где β1=1.75, β2=1.55. Пороговые значения ε1sw, ε2sw являются индивидуальными для каждого животного.

Момент начала состояния эпилептической активности детектируем в момент времени t1sw, для которого выполнено соотношение . Момент окончания состояния эпилептической активности детектируем в момент времени t2sw, для которого выполнено соотношение . Временной интервал [t1sw; t2sw] соответствует состоянию эпилептической активности.

Для детектирования эпилептической активности невозможно ввести временные пороги оценки их возникновения в связи с физиологическими особенностями данного состояния. При этом, прямое использование данных соотношений приводит к возникновению ложного детектирования колебательных артефактов на временных сигналах ЭКоГ.

Для исключения случаев ошибочной детекции используют процедуру оценки экстремумов (максимальных max(x(t)) и минимальных min(x(t)) экстремальных значений) сигнала x(t) во временном окне Δt=1 с за 5 с до приступа эпилептической активности и во время детектированного приступа эпилептической активности во временном интервале [t1sw; t2sw]. Для каждого детектированного временного интервала [t1sw; t2sw], соответствующего эпилептической активности, оцениваем величины Xmax, Xmin согласно следующим формулам:

Корректная детекция состояния эпилептической активности на временном интервале [t1sw;t2sw] достигнута при . При нарушении данного критерия детекцию временного интервала [t1sw; t2sw] полагаем ошибочной.

Рассмотрим пример конкретной реализации разработанного способа. Для регистрации сигналов использован стандартный метод ЭКоГ у крыс. Экспериментальные работы проведены на самцах крыс WAG/Rij в возрасте 9 месяцев. Электроды вживлялись над областью лобной коры (AP=2, L=2), теменной коры (соматосенсорная область, AP -2, L 6) и затылочной коры (AP-5; L 4). Все координаты указаны в мм относительно брегмы. Референтный электрод размещен над поверхностью мозжечка для обеспечения монополярной регистрации от поверхностных электродов. Для регистрации M=3 каналов ЭКоГ использована установка на базе 8-канальной системы PowerLab 4/35 (ADInstruments, Австралия). Длительность T записи ЭКоГ составляла от 1 до 2 часов в полосе частот 0.5-200 Гц, частота дискретизации N = 400 для каждого канала. Дополнительно синхронно с ЭЭГ зарегистрирована видеозапись на основе видео - модуля в программном пакете LabChart 7 и веб-камеры Genius eFace 1325R. По итогам применения заявляемого способа получены характеристики , типичные фрагменты которых приведены на фиг. 4 и 5. На фиг. 4 можно наблюдать артефакт короткого случайного повышения значений характеристики (4). Учет дополнительного ограничения минимальной длительности стадий сна и бодрствования исключает возможность ложной детекции подобных событий. Также на фиг. 5 наблюдается превышение характеристикой (6) пороговых значений. Однако выполнение анализа экстремумов (10), (11) сигнала x(t) позволяет исключить ложное детектирование данного события, как эпилептической активности. Проведена сравнительная статистическая оценка успешности детектирования различных физиологических состояний у животных на основе ручной обработки видеозаписи и ЭКоГ нейрофизиологом и заявляемым методом. Точность автоматической диагностики при оценке длительности временных интервалов физиологических состояний при определении интервалов (i) бодрствования - 96.53%, (ii) сна - 94.70%, (iii) эпилептической активности - 99.34%.

Средняя точность использования способа к сигналам трех электрокортикограмм достигает 96.86% в сравнении с ручной разметкой, выполненной опытным нейрофизиологом с использованием данных видеографии.

Инновационный потенциал предлагаемого способа состоит в том, что он позволяет провести диагностику характерных состояний по записям электрической активности головного мозга (электрокортикограммы, электроэнцефалограммы) без привлечения к анализу дополнительных сигналов (видеографии, окулографии, миографии). Использование изобретения в задачах, связанных с диагностикой основных физиологических состояний животных, позволяет отказаться от регистрации дополнительных сигналов мышечной активности или видеозаписи, необходимых для точного выполнения диагностики.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 90.
26.08.2017
№217.015.d7f7

Способ измерения параметров полупроводниковых структур

Использование: для одновременного определения толщины полуизолирующей подложки, толщины и удельной электропроводности нанесенного на нее сильнолегированного слоя и подвижности свободных носителей заряда в этом слое. Сущность изобретения заключается в том, что способ определения параметров...
Тип: Изобретение
Номер охранного документа: 0002622600
Дата охранного документа: 16.06.2017
20.11.2017
№217.015.ef60

Умножитель частоты высокой кратности

Изобретение относится к радиоэлектронике, в частности к СВЧ-умножителям частоты высокой кратности, применяемым для получения сигнала высокой частоты с низким уровнем фазового шума в выходном сигнале. Технический результат заключается в расширении арсенала средств. Умножитель частоты включает...
Тип: Изобретение
Номер охранного документа: 0002628993
Дата охранного документа: 23.08.2017
20.11.2017
№217.015.ef85

Способ селективной запайки внешних оболочек фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС). Способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия. При...
Тип: Изобретение
Номер охранного документа: 0002629133
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.fdf3

Способ наблюдения жировой ткани

Группа изобретений относится к медицине, а именно к хирургии, и касается визуализации кровеносного сосуда в жировой ткани во время операции на этапе удаления этой ткани. Для этого предложены варианты способа исследования жировой ткани. При осуществлении первого варианта способа на жировую ткань...
Тип: Изобретение
Номер охранного документа: 0002638642
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.00bf

Способ определения расстояния до объекта

Изобретение относится к области контрольно–измерительной техники. Способ измерения расстояния до объекта заключается в том, что объект освещают лазерным излучением, отраженное от объекта излучение, интерферирующее в лазере, преобразуют в электрический автодинный сигнал. Лазерное излучение...
Тип: Изобретение
Номер охранного документа: 0002629651
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.0eee

Биосенсор для неинвазивного оптического мониторинга патологии биологических тканей

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного оптического мониторинга патологии биологических тканей, связанных с развитием сахарного диабета. Биосенсор содержит: источник и приемник излучения; аппликатор, изготовленный в виде сосуда с...
Тип: Изобретение
Номер охранного документа: 0002633494
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1022

Способ оценки скорости осадконакопления

Изобретение относится к области геологии и может быть использовано для оценки скорости осадконакопления карбонатных отложений. Сущность: измеряют магнитную восприимчивость карбонатных пород на разных стратиграфических уровнях или участках разреза. Строят графики или карты значений, обратных...
Тип: Изобретение
Номер охранного документа: 0002633659
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1035

Устройство для дозированного вскрытия микрокапсул

Использование: для хранения микрокапсул с ЛВ и их дозированного вскрытия. Сущность изобретения заключается в том, что устройство для дозированного вскрытия микрокапсул содержит подложку и, по крайней мере, одну лунку для микрокапсулы, по крайней мере, один первый электропроводный слой,...
Тип: Изобретение
Номер охранного документа: 0002633655
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.10f7

Способ трансдермальной доставки биологически активных веществ

Изобретение относится к медицине и может быть использовано для трансдермальной доставки биологически активных веществ (БАВ). Для этого осуществляют аппликацию контейнеров с иммобилизованным БАВ на поверхность кожи с последующей транспортировкой через придатки кожи. В качестве контейнеров...
Тип: Изобретение
Номер охранного документа: 0002633928
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
Показаны записи 1-4 из 4.
20.10.2015
№216.013.8656

Способ выделения веретеноподобных паттернов по временным данным электроэнцефалограмм

Изобретение относится к области медицины, а именно к электрофизиологии. Регистрируют сигнал ЭЭГ и осуществляют непрерывное вейвлетное преобразование. Определяют мгновенное и интегральное распределения энергии вейвлетного спектра по временным масштабам, которые соответствуют частотным диапазонам...
Тип: Изобретение
Номер охранного документа: 0002565993
Дата охранного документа: 20.10.2015
20.12.2018
№218.016.a9f6

Способ определения уровня концентрации внимания по временным данным электроэнцефалограмм

Изобретение относится к медицине, а именно к цифровой обработке и анализа данных электроэнцефалограмм, и может быть использовано для определения уровня концентрации внимания по временным данным электроэнцефалограмм. Способ характеризуется тем, что операторам предъявляют неоднозначные...
Тип: Изобретение
Номер охранного документа: 0002675340
Дата охранного документа: 18.12.2018
21.03.2019
№219.016.eb55

Способ классификации сигналов ээг при воображении двигательной активности у нетренированного оператора

Изобретение относится к области цифровой обработки и анализа данных и предназначено для обработки многоканальных электроэнцефалограмм с целью выделения в режиме реального времени характерных паттернов электрической активности головного мозга, связанных с воображением двигательной активности у...
Тип: Изобретение
Номер охранного документа: 0002682492
Дата охранного документа: 19.03.2019
01.11.2019
№219.017.dc29

Устройство для определения в режиме реального времени степени концентрации внимания оператора при восприятии и обработке информации

Изобретение относится к диагностическому биомедицинскому оборудованию. Устройство для определения в режиме реального времени степени концентрации внимания оператора при восприятии и обработке информации включает блок регистрации биопотенциалов ЭЭГ, стимулятор, реализованный с возможностью в...
Тип: Изобретение
Номер охранного документа: 0002704562
Дата охранного документа: 29.10.2019
+ добавить свой РИД