×
02.06.2023
223.018.7572

Результат интеллектуальной деятельности: ГИДРОДИОД

Вид РИД

Изобретение

Аннотация: Изобретение относится к области управления или регулирования расхода жидкости и может быть использовано в различных гидравлических системах, в которых необходимо регулировать параметры потоков при низких и средних давлениях, в том числе в качестве запорных органов гидравлических машин периодического действия (например, в насосах). Гидродиод имеет корпус, содержащий верхнюю (1) и нижнюю (2) плиты и боковые стенки (3) и (4), стянутые резьбовыми креплениями (5) с образованием канала прямоугольного сечения (6) для прохода жидкой среды. В этом канале вдоль него на двух его противоположных сторонах (плитах (1) и (2)) в пазах (7) установлены пары жестких пластин (8), наклоненных под углом в сторону прямого потока и имеющие длину вылета . Расстояние между двумя пластинами вдоль канала (6) равно ∙. Количество пар пластин лежит в диапазоне 4÷8. Угол наклона - в диапазоне 20÷40 градусов. При прямом прохождении потока он практически не встречает сопротивления, и расход в прямом потоке практически не отличается от расхода через канал, проходное сечение которого равно площади канала (6), свободной от пластин (8). При обратном течении часть потока отклоняется пластинами (8) в сторону поверхности плит (1) и (2), упирается в карман между пластинами с образованием обратного течения и вихря, препятствующих движению жидкости, из-за чего гидравлическое сопротивление гидродиода существенно возрастает. Снижаются габариты, масса и затраты на изготовление, повышается диодность. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области управления или регулирования расхода жидкости и может быть использовано в различных гидравлических системах, в которых необходимо регулировать параметры потоков при низких и средних давлениях, в том числе в качестве запорных органов гидравлических машин периодического действия (например, в насосах).

Известны гидравлические диоды (в дальнейшем - гидродиоды), содержащие канал с установленными в нем элементами, имеющими поверхности с наклоном в сторону прямого потока (см., например, Носов Е.Ю. Повышение эффективности работы гидропневматических агрегатов с катящимся ротором. Автореферат дисс. канд. наук., 2009 г., стр. 14, рис. 12).

Наиболее близким к заявляемому техническому устройству является гидродиод, содержащий канал прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух противоположных сторонах канала установлены пары жестких пластин, наклоненных под углом в сторону прямого потока (см. Носов Е.Ю. Повышение эффективности работы гидропневматических агрегатов с катящимся ротором. Автореферат дис. канд. наук., 2009 г., стр. 12, рис. 6).

Недостатком известных конструкций является их низкая диодность (отношение расхода прямого потока к расходу потока в обратном направлении), особенно при работе на низких и средних давлениях жидкости, и существование неопределенности в оптимальном количестве пар таких пластин, что заставляет проектировщика использовать их большое количество, что, в свою очередь, увеличивает габариты, массу и технологическую сложность изготовления гидродиодов.

Технической задачей изобретения является снижение материалоемкости, габаритов и технологической сложности изготовления гидродиодов, а также повышение их диодности при работе на низких и средних давлениях и жидкости.

Данный технический результат достигается тем, что в известном гидродиоде, содержащем канал прямоугольного сечения для прохода жидкой среды, в котором на двух противоположных сторонах вдоль канала установлены пары жестких пластин, наклоненных под углом в сторону прямого потока, согласно изобретению, пластины установлены относительно друг друга на расстоянии В, определяемом по формуле В = lcos α, где l - длина выступающей в канал части пластины, α - угол наклона плоскости пластин к стенке канала, в которую пластины вмонтированы. Кроме того, количество пар пластин, установленных в канале, может находиться в диапазоне 4÷8 штук, при этом меньшее число соответствует рабочей жидкости с высокой кинематической вязкостью, например, 24 мм2/с, а большее - с низкой кинематической вязкостью, например, 6 мм2/с, и угол наклона пластин, равный углу между плоскостью пластин и плоскостью стенки канала, в которую пластины установлены, может находиться в диапазоне 20÷40 градусов, при этом меньшее число соответствует рабочей жидкости с низкой кинематической вязкостью, а большее - с высокой кинематической вязкостью.

Сущность изобретения поясняется чертежами.

На фиг. 1 показано продольное сечение гидродиода, а на фиг. 2 - его поперечное сечение плоскостью А-А.

На фиг. 3 показан фрагмент конструкции с обозначениями размера выступающей части пластин и их расстоянием друг от друга.

На фиг. 4 показан диод в процессе прохождения по нему потока жидкости в прямом направления (слева - направо), а на фиг. 5 - в обратном направлении (справа - налево).

На фиг. 6 показан обобщенный график зависимости диодности D от угла α наклона пластин при течении маловязких жидкостей.

На фиг. 7 показан обобщенный график зависимости диодности D от числа пар пластин N при работе гидродиода с маловязкими жидкостями.

На фиг. 8 показан обобщенный график зависимости диодности D от оптимального расстояния между пластинами вдоль канала гидродиода, характерном как для вязких, так и для маловязких жидкостей.

Гидродиод (фиг. 1 и 2) имеет корпус, содержащий верхнюю 1 и нижнюю 2 плиты и боковые стенки 3 и 4, стянутые резьбовыми креплениями 5 с образованием канала прямоугольного сечения 6 для прохода жидкой среды. В этом канале вдоль него на двух его противоположных сторонах (плитах 1 и 2) в пазах 7 установлены пары жестких пластин 8, наклоненных под углом α (см. также фиг. 3) в сторону прямого потока.

Угол α наклона пластин равен углу между плоскостью пластин 8 и плоскостью стенок канала (плит 1 и 2), в которые пластины 8 установлены.

Расстояние В между пластинами равно произведению lcos α, где l - длина выступающей в канал 6 части пластин 8, и α - угол наклона пластин.

Гидродиод работает следующим образом (фиг. 4 и 5).

При прямом прохождении потока (фиг. 4) линии тока (обозначены стрелками) практически не встречают сопротивление, и жидкость течет, огибая наклонные в сторону потока пластины. В связи с этим расход жидкости в прямом потоке практически не отличается от расхода через канал, проходное сечение которого равно площади канала 6, свободной от пластин 8.

При обратном течении жидкости (фиг. 5) часть потока жидкости (обозначена стрелками) отклоняется наклонными пластинами 8 в сторону поверхности плит 1 и 2, «упирается» в карман между пластинами с образованием обратного течения и вихря, препятствующих движению жидкости, из-за чего гидравлическое сопротивление гидродиода существенно превышает сопротивление течению жидкости в прямом потоке. В связи с этим, расход жидкости в обратном направлении кратно ниже расхода жидкости в прямом направлении.

Вышеописанная работа гидродиода оценивается диодностью D, которая равна отношению расхода при прямом течении жидкости QПР к расходу жидкости в обратном направлении QОБ при одном и том же давлении на входе в гидродиод: D = QПР / QОБ.

При этом следовало бы ожидать, что чем больше по длине канала гидродиода установлено пар пластин, тем сильнее отличаются прямой и обратный потоки, и диодность должна быть больше.

Однако проведенными экспериментальными исследованиями установлено, что диодность практически перестает расти после установки в канале гидродиода определенного числа пар пластин, то есть диодность, например, при работе на невязких маслах типа И-5а и воде при количестве пар пластин 8-ми шт. больше, чем при установке 7-ми или менее пар пластин, но дальнейшее увеличение количества пар пластин практически этот параметр не увеличивает. Причем, снижение роста диодности начинает явно наблюдаться уже при увеличении количества пар пластин с 5-ти и далее. Оптимальное предельное количество работающих пар пластин зависит также от вязкости жидкости. Для наиболее вязких жидкостей типа 75W (трансмиссионное масло) предельное оптимальное количество пар пластин равно 4-м.

Визуальное наблюдение через прозрачные стенки 3 и 4 за потоком жидкости в гидродиоде, в том числе с применением подкрашенной алюминиевой пудрой жидкости, позволило установить, что относительно высокое гидравлическое сопротивление гидродиода такой формы при течении обратного потока приводит к появлению мельчайших пузырьков воздуха (изображены на фиг. 5 в виде небольших окружностей).

Воздух, который ранее находился в жидкости в растворенном состоянии, выделяется из нее в связи со снижением в ней давления из-за нарастающего гидравлического сопротивления. Этот процесс начинается примерно в зоне установки 4-5-й пар пластин 8 (для маловязких жидкостей), и далее развивается, что существенно влияет на физико-механические свойства жидкости и условия ее течения через препятствия, т.к. она теряет свою упругость. Это сначала снижает вихреобразование, а потом и сводит его на «нет».

Это явление отражено на фиг. 7, где показано, что сначала при увеличении числа пар пластин N диодность растет, потом ее рост в зоне между четырех и шести пар пластин замедляется, и при N = 8 рост диодности практически прекращается.

При исследовании жидкостей с высокой вязкостью этот эффект наблюдается уже на второй-третьей паре пластин.

Зависимость между предельным оптимальным количеством пар пластин от вязкости жидкости является практически линейной.

В связи с этим при изготовлении гидродиода данной конструкции достаточно ограничиться предельным оптимальным количеством пар пластин, что исключает неопределенность при проектировании и дает возможность снизить материалоемкость, габариты и затраты на изготовление гидродиода.

Экспериментальные исследования также показали, что существует явный оптимум по углу наклона пластин ϕ, что отражено на фиг. 6 в виде графика, из которого становится ясным, что в гидродиоде данной конструкции при работе на маловязких жидкостях оптимальным углом наклона пластин является угол, равный 20-ти градусам. При работе на жидкостях с большой вязкостью этот угол равен 40-ка градусам. Зависимость оптимального угла наклона пластин от вязкости жидкости практически линейная. Выполнение этого условия позволяет изготавливать гидродиоды с максимальной диодностью.

Проведенные натурные опыты также выявили влияние расстояния между пластинами В на диодность, что отражено на графике, изображенном на фиг. 8. Установлено, что в гидродиоде такой конструкции оптимальным, обеспечивающим максимальную диодность расстоянием между пластинами, является расстояние В, определенное по формуле В = lcos α, причем это условие не зависит от вязкости жидкости.

Таким образом, следует признать, что поставленная техническая задача полностью выполнена, и предлагаемые конструктивные соотношения позволяют сделать гидродиод с минимальными габаритами, при минимальных затратах на материал и изготовить его с максимальной диодностью.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 41.
14.05.2023
№223.018.5684

Спортивное метательное устройство и его аксессуары (варианты)

Спортивное метательное устройство (лук или арбалет) содержит гибкие плечи, на концах которых неподвижно установлены упругие пластины или рычаги под острым углом к тетиве. Тетива закреплена на свободных концах пластин и рычагов. На концах жестких плеч шарнирно установлены соединенные с плечами...
Тип: Изобретение
Номер охранного документа: 0002734084
Дата охранного документа: 12.10.2020
15.05.2023
№223.018.5b7f

Способ изготовления катодов для установок магнетронного распыления из тугоплавких металлов

Изобретение относится к области машиностроения, в частности к обработке и изготовлению деталей. Способ включает электроэрозионную обработку заготовки в виде прутка на проволочно-вырезном станке с числовым программным управлением (ЧПУ), обеспечивающем точность размеров с учетом припусков на...
Тип: Изобретение
Номер охранного документа: 0002763719
Дата охранного документа: 30.12.2021
15.05.2023
№223.018.5b80

Способ изготовления катодов для установок магнетронного распыления из тугоплавких металлов

Изобретение относится к области машиностроения, в частности к обработке и изготовлению деталей. Способ включает электроэрозионную обработку заготовки в виде прутка на проволочно-вырезном станке с числовым программным управлением (ЧПУ), обеспечивающем точность размеров с учетом припусков на...
Тип: Изобретение
Номер охранного документа: 0002763719
Дата охранного документа: 30.12.2021
23.05.2023
№223.018.6c19

Виброизолирующее устройство

Изобретение относится к устройствам активной виброзащиты крупногабаритных объектов. Телескопическое направляющее устройство (2) выполнено в виде встречно направленных наружного (3) и внутреннего (4) стаканов с установленными между ними резинокордной оболочкой (5) и центрирующими элементами (6,...
Тип: Изобретение
Номер охранного документа: 0002736068
Дата охранного документа: 11.11.2020
23.05.2023
№223.018.6f46

Способ спуска ускорителя ступени ракеты-носителя при аварийном выключении жрд и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ спуска ускорителя ступени (УС) ракеты-носителя (РН) при аварийном выключении жидкостного ракетного двигателя (АВД) в заданный район падения основан на стабилизации УС. Управление движением выполняется за счёт сброса продуктов...
Тип: Изобретение
Номер охранного документа: 0002746473
Дата охранного документа: 14.04.2021
27.05.2023
№223.018.70c5

Электромагнитный сепаратор

Предложенное изобретение относится к устройствам, предназначенным для извлечения ферромагнитных частиц (стальной пыли, шайб, гвоздей, шурупов и других предметов ферромагнитного мусора), присутствующих в сыпучих материалах, транспортируемых на ленточных конвейерах и отправляемых на переработку...
Тип: Изобретение
Номер охранного документа: 0002739800
Дата охранного документа: 28.12.2020
27.05.2023
№223.018.717a

Способ квадратурной внутриимпульсной фазовой модуляции

Изобретение относится к области радиотехники. Технический результат – повышение помехоустойчивости. Для этого предложен способ квадратурной внутриимпульсной фазовой модуляции, особенностью которого является то, что передача сообщения за счет амплитудной модуляции не производится, а производится...
Тип: Изобретение
Номер охранного документа: 0002765981
Дата охранного документа: 07.02.2022
27.05.2023
№223.018.721c

Способ моделирования процесса очистки поверхности и устройство для его реализации

Группа изобретений относится к области моделирования процессов очистки различных поверхностей изделий от загрязнений, возникающих в процессе производства и эксплуатации, с целью выбора оптимальных режимов и воздействующих факторов. Способ моделирования процесса очистки поверхности включает...
Тип: Изобретение
Номер охранного документа: 0002743936
Дата охранного документа: 01.03.2021
27.05.2023
№223.018.7231

Способ повышения пропускной способности и оценки качества коротковолновых каналов связи с частотной манипуляцией при их адаптации к условиям связи

Изобретение относится к области радиотехники и предназначено для использования в коротковолновых каналах радиосвязи при их адаптации к условиям связи. В способе повышения пропускной способности и оценки качества коротковолновых каналов связи с частотной манипуляцией при их адаптации к условиям...
Тип: Изобретение
Номер охранного документа: 0002746495
Дата охранного документа: 14.04.2021
30.05.2023
№223.018.7375

Датчик угарного газа

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей оксида углерода, и может быть использовано для экологического мониторинга. Датчик согласно изобретению содержит полупроводниковое...
Тип: Изобретение
Номер охранного документа: 0002760311
Дата охранного документа: 23.11.2021
Показаны записи 21-30 из 79.
20.10.2015
№216.013.8619

Способ работы поршневого гидропневматического агрегата и устройство для его реализации

Изобретение относится к области поршневых машин объемного вытеснения. Способ работы агрегата заключается в попеременном последовательном сжатии в надпоршневой полости цилиндра газа при ходе поршня в сторону газовых распределительных органов и сжатии жидкости в подпоршневой полости цилиндра при...
Тип: Изобретение
Номер охранного документа: 0002565932
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8624

Машина объемного действия

Изобретение относится к области машин объемного действия, предназначенных для сжатия и перемещения жидкостей и газов, в которых предъявляются высокие требования к равномерности подачи жидкости. Машина состоит из цилиндра 1 с дифференциальным поршнем 2, с образованием полостей 3 и 4 с...
Тип: Изобретение
Номер охранного документа: 0002565943
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.862c

Способ работы газожидкостного агрегата и устройство для его осуществления

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов. Способ работы состоит в том, что при пуске агрегата жидкостную полость соединяют с линией всасывания жидкости мимо...
Тип: Изобретение
Номер охранного документа: 0002565951
Дата охранного документа: 20.10.2015
27.03.2016
№216.014.c5b1

Поршневой компрессор с автономным жидкостным охлаждением

Изобретение относится к области компрессоростроения и может быть использовано в компрессорах с автономным жидкостным охлаждением. Компрессор состоит из цилиндра 1 с поршнем 2 с образованием рабочего объема 4, полости нагнетания 5, нагнетательного клапана 6, полости всасывания 7, всасывающего...
Тип: Изобретение
Номер охранного документа: 0002578748
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c6ea

Поршневой насос-компрессор

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании гибридных поршневых машин объемного действия преимущественно малой и средней производительности, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов....
Тип: Изобретение
Номер охранного документа: 0002578758
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c7c0

Способ работы машины объёмного действия и устройство для его осуществления

Изобретение относится к области машин объемного действия поршневого типа и может быть использовано при создании высокоэффективных поршневых машин малой и средней производительности с автономной жидкостной системой охлаждения. Способ работы заключается в попеременном всасывании и нагнетании газа...
Тип: Изобретение
Номер охранного документа: 0002578776
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c7d9

Ротационная машина объемного действия

Изобретение относится к области насосо- и компрессоростроения и может быть использовано для сжатия и подачи потребителю газов и жидкостей под давлением. Ротационная машина объемного действия содержит рабочий цилиндр 2 с размещенным в нем основным ротором 3, имеющим по крайней мере один выступ...
Тип: Изобретение
Номер охранного документа: 0002578752
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c818

Ротационная гибридная машина объёмного действия

Изобретение относится к области насосо- и компрессоростроения. Ротационная гибридная машина объемного действия содержит корпус, всасывающее окно 11 и нагнетательный клапан, размещенные соответственно в линии всасывания и нагнетания 12, рабочий цилиндр 3 с размещенным в нем основным ротором 4,...
Тип: Изобретение
Номер охранного документа: 0002578744
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c90e

Жидкостный насос с электромагнитным приводом

Изобретение относится к области малорасходных насосных машин. Насос состоит из цилиндра 7, выполненного из немагнитного материала, с индукционной катушкой 8, соединенной с источником пульсирующего тока. Внутри цилиндра 7 с радиальным зазором установлен поршень 9, являющийся сердечником...
Тип: Изобретение
Номер охранного документа: 0002578757
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.cc8f

Система охлаждения двигателя внутреннего сгорания

Изобретение относится к области двигателей внутреннего сгорания (ДВС) и может быть использовано в системе охлаждения ДВС автотранспортной и автотракторной техники, работающей при низкой температуре. Система охлаждения двигателя внутреннего сгорания, содержащая заполненные охлаждающей жидкостью...
Тип: Изобретение
Номер охранного документа: 0002577914
Дата охранного документа: 20.03.2016
+ добавить свой РИД