×
01.06.2023
223.018.751e

Результат интеллектуальной деятельности: Способ прогнозирования разрушения заготовок в процессе обработки металлов давлением

Вид РИД

Изобретение

Аннотация: Изобретение относится к области обработки металлов давлением. Способ прогнозирования разрушения заготовок в процессах обработки металлов давлением основан на использовании компьютерного моделирования в вычислительной среде конечно-элементного анализа и экспериментальной оценки. Проводится компьютерное моделирование исследуемого процесса обработки металлов давлением, по результатам для исследуемой точки заготовки строят траекторию в координатах «накопленная деформация - коэффициент жесткости напряженного состояния». Проводят стандартные испытания образцов из материала деформируемой заготовки в исследуемом процессе, по окончанию которых определяют значения накопленной деформации в момент разрушения. В тех же координатах, в которых строили траекторию, наносят две или три точки, соответствующие результатам стандартных испытаний, откладывая по оси абсцисс 1 для растяжения, 0 для кручения, -1 для сжатия. По оси ординат откладывают значения накопленной деформации, определенные по результатам соответствующих стандартных испытаний. Через полученные точки проводят линию, получая линию предельной пластичности. В результате обеспечивается определение областей в объеме деформированной заготовки, которые либо наиболее склонны к разрушению, либо в которых произойдет разрушение. 5 ил., 1 табл.

Изобретение относится к области обработки металлов давлением, а именно к способам прогнозирования разрушения заготовок в процессах обработки металлов давлением.

Известен способ прогнозирования разрушения с помощью вычислительной среды конечно-элементного анализа QForm с использованием нормализованного критерия разрушения Кокрофта-Лэтэма (Конечно-элементное моделирование технологических процессов ковки и объемной штамповки: учебное пособие / [А.В. Власов и др.]; под ред. А.В. Власова. - Москва: Издательство МГТУ им. Н.Э. Баумана, 2019. - 383, [1] с.: ил., с. 324-325). Недостатком данного способа является то, что далеко не всегда известно критическое значение используемого критерия разрушения. Для каждого материала критическое значение свое. Также к недостаткам данного способа может быть отнесено то, что использование нормализованного критерия разрушения Кокрофта-Лэтэма, как показывают исследования, неэффективно для прогнозирования разрушения в некоторых процессах обработки металлов давлением, например, при трехвалковой радиально-сдвиговой прокатке.

Известен способ прогнозирования разрушения с помощью вычислительной среды конечно-элементного анализа QForm с использованием модели разрушения Гурсо-Твергарда-Нидельмана (Конечно-элементное моделирование технологических процессов ковки и объемной штамповки: учебное пособие / [А.В. Власов и др.]; под ред. А.В. Власова. - Москва: Издательство МГТУ им. Н.Э. Баумана, 2019. - 383, [1] с.: ил., с. 326-327 и Власов Ан. В., Герасимов Д.А. Реализация модели Гурсо-Твергарда-Нидельмана для расчетов процессов холодной объемной штамповки несжимаемых материалов // Известия высших учебных заведений. Машиностроение. 2017. №8 (689). С. 8-17.). Недостатком указанного способа является необходимость определения трех констант материала, а также то, что для каждого материала критическое значение, рассчитываемое с помощью используемой модели, свое и не всегда известно. Это затрудняет процесс прогнозирования разрушения и определения его точных размеров.

Известен способ прогнозирования разрушения с помощью вычислительной среды конечно-элементного анализа Forge с использованием усовершенствованной модели разрушения Лемэтра (S. Fanini, "Modelling of the Marnnesmann Effect in Tube Piercing", Ph.D. Thesis, University of Padua, 2008). Недостатком данного способа является определение констант материала, используемых в модели разрушения, экспериментальным путем, что связано с существенными материальными и временными затратами. Эффективность данного способа (по объему прогнозируемого разрушения) продемонстрирована только для одного способа обработки металлов давлением - двухвалковой винтовой прокатки, и только для одного режима деформации. Разрушение, прогнозируемое с помощью данного способа, начинается в области заготовки, отличной от той, в которой разрушение начинается в реальных процессах двухвалковой винтовой прокатки.

Известен способ прогнозирования разрушения с помощью вычислительной среды METFOR для процесса двухвалковой винтовой прошивки (Berazategui, D.A., Cavaliere, М.A., Montelatici, L. and Dvorkin, Е.N. On the modelling of complex 3D bulk metal forming processes via the pseudo-concentrations technique. Application to the simulation of the Mannesmann piercing process // International Journal for Numerical Methods in Engineering. 2006. Vol. 65. No 7. pp 1113-1144). Недостатком указанного способа является то, что его эффективность не оценивали путем сравнения с результатами опытных прошивок по объему и размерам разрушения.

Известен способ прогнозирования деформируемости и разрушения заготовок (Белевитин В.А. Разработка и совершенствование методов экспериментальной механики для оптимизации технологических процессов обработки металлов давлением. Диссертация на соискание ученой степени доктора технических наук. ОАО «Уфалейский завод металлургического машиностроения», г. Верхний Уфалей, Челябинская область, 1997 г.). Недостатком данного способа является то, что необходимо использовать слоистые заготовки, из которых успешно деформируется (без расслоения или разрушения) лишь каждая пятая. Процесс обработки результатов экспериментальных исследований связан с существенными временными затратами.

Техническим результатом изобретения является определение областей в объеме деформированной заготовки, которые либо наиболее склонны к разрушению, либо в которых произойдет разрушение.

Технический результат достигается тем, что исследуемый процесс обработки давлением моделируют с помощью вычислительной среды конечно-элементного анализа, по окончании компьютерного моделирования для исследуемой точки заготовки строят траекторию в координатах «накопленная деформация - коэффициент жесткости напряженного состояния», в этих же координатах строят линию предельной пластичности. Если траектория оказывается выше линии предельной пластичности, то прогнозируют разрушение в исследуемой точке заготовки, если траектория оказывается ниже линии предельной пластичности, то разрушение в исследуемой точке не прогнозируют. При этом способ обладает универсальностью в плане его применения для анализа различных способов обработки металлов давлением и вариативностью, то есть не зависит от того, какая вычислительная среда конечно-элементного анализа используется для прогнозирования разрушения. В отличие от многих существующих способов в рамках разработанного способа используемые для расчетов параметры - интенсивность скорости деформации, среднее напряжение, интенсивности напряжений - рассчитываются всеми широко используемыми в настоящее время вычислительными средами конечно-элементного анализа: DEFORM, QForm, Forge®NxT, Simufact.forming, Abaqus, Ansys и др. Например, в QForm, и накопленная деформация, и коэффициент жесткости, рассчитываются непосредственно самой средой, данные легко импортируются в сторонние приложения для построения указанной выше траектории и линии предельной пластичности, которая строится с учетом результатов стандартных испытаний. Если же значения накопленной деформации и коэффициента жесткости напряженного состояния непосредственно вычислительной средой не рассчитываются, то из вычислительной среды экспортируются данные об изменении интенсивности скорости деформации, среднего напряжения и интенсивности напряжений. Интенсивность скорости деформации численно интегрируется по времени для получения значений накопленной деформации, а среднее напряжение делится на интенсивность напряжений для получения значений коэффициента жесткости напряженного состояния.

Технический результат достигается на примере прогнозирования разрушения при двухвалковой винтовой прошивке в стане с направляющими линейками. Экспериментальные исследования процесса прошивки полых заготовок с дном выполнены на опытно-промышленном стане МИСиС-130Д. В качестве исходного материала использовался горячекатаный пруток из стали 50 диаметром 31 мм, который разрезался на штучные заготовки длиной 85 мм на ленточной пиле.

Перед прошивкой заготовки в вертикальном положении нагревали в камерной электрической печи сопротивления до температуры 1150°С в течении 15…20 минут. Время транспортировки нагретых заготовок от печи до входной стороны прошивного стана составляло 2…4 с.

Прошивка выполнялась на двух разных настройках прошивного стана, обеспечивающих получение одинаковых геометрических размеров гильз (таблица 1).

В соответствии с размерами рабочего инструмента и заготовки создали их 3D модели в SolidWorks. Также создали 3D модели направляющих с входной и выходной стороны. Из моделей создали сборку (фиг. 1), состоящую из: валков (1, 2), линеек (3, одна из линеек для удобства на фиг. 1 не показана), заготовки (4), толкателя (5). Направляющей с входной стороны (6), направляющей с выходной стороны (7). Сборку сохранили в формате .stl и загрузили в preprocessor DEFORM. Моделирование прошивки выполнялось без учета теплообмена между заготовкой и инструментами. Фактор трения для пар «валок-заготовка» задали равным 1 (по закону Зибеля), для пар «линейка-заготовка» и «оправка-заготовка» равным 0,3, для пар «направляющая-заготовка» и «толкатель-заготовка» равным 0,1. Во время моделирования оправка при контакте с заготовкой вращалась (как и при опытных прокатках). Температуру заготовки перед прокаткой задавали равной 1150°С, марка стали заготовки AISI-1050 (зарубежный аналог стали 50).

По режимам, представленным в табл. 1, была прокатана партия гильз с дном наружным диаметром 33,5 мм и толщиной стенки 6,5 мм (D/S=5,2). Для контроля наличия разрушения отобранные образцы гильз были разрезаны на ленточных пилах в продольной плоскости. Во всех гильзах, прошитых при настройках №1 (табл. 1), зафиксировано разрушение осевой зоны в донной части заготовки непосредственно перед носком оправки (фиг. 2). В гильзах, прокатанных по режиму №2 (табл. 1) разрушение перед носком оправки отсутствовало (фиг. 3)

По результатам компьютерного моделирования оценили какие значения принимают параметры напряженно-деформированного состояния в точке перед носком оправки. Для этого в постпроцессоре DEFORM выбрали точку (фиг. 4) как для варианта моделирования прошивки с углом подачи 15 градусов, так и для варианта моделирования с углом подачи валков 18 градусов. Рассчитали значения коэффициента жесткости напряженного состояния. Для этого использовали значения параметров «mean stress» (среднее напряжение) и «stress effective)) (интенсивность напряжений), рассчитанные с помощью постпроцессора DEFORM. Также рассчитали значения накопленной деформации. С помощью инструментария постпроцессора DEFORM рассчитали изменение по времени интенсивности скорости деформации («strain rate effective))). Результаты расчета загрузили в Microsoft Excel, численно проинтегрировали по времени, получив значения накопленной деформации на каждом шаге расчета. В координатах «накопленная деформация-коэффициент жесткости напряженного состояния» построили траектории деформации при прошивках с углами подачи 15 и 18 градусов для выбранных точек.

Провели стандартные испытания образцов из стали 50 на растяжение, кручение и сжатие на универсальной испытательной машине Gleeble 3800 при температуре 1150°С и скорости деформации 1 с-1, что соответствует опытным прошивкам, до разрушения образцов. По окончании испытаний определяли степень деформации в момент разрушения. При испытании на растяжение степень деформации составила 1,16, при испытании на сжатие - 0,937, то есть отношение конечной высоты образца к исходной составила 0,063. Угол сдвига на поверхности разрушенного при испытании на кручение образца составил 72 градуса. Значение накопленной деформации при растяжении рассчитывали по формуле:

где - накопленная деформация, ε - степень деформации в момент разрушения. Значение накопленной деформации при кручении рассчитывали по формуле:

где - накопленная деформация, α - угол сдвига на поверхности разрушенного образца.

Значение накопленной деформации при сжатии рассчитывали по формуле:

где - накопленная деформация, η - коэффициент жесткости напряженного состояния при сжатии, равняется -1, Н0 - начальная высота образца, мм, Н - высота образца в момент появления разрушения.

В тех же координатах, в которых строили траектории (фиг. 5), построили три точки, соответствующие растяжению, кручению и сжатию, с координатами по оси абсцисс 1 (для растяжения), 0 (для кручения) и -1 (для сжатия). По оси ординат отложили соответствующие каждому испытанию значения накопленной деформации: 0,77 для растяжения, 1,74 для кручения, 2,76 для сжатия. Получили три точки (фиг. 5). Используя эти точки с помощью Microsoft Excel построили ломаную линию, получив гипотетический вид линии предельной пластичности (линия 3 на фиг. 5). Линия предельной пластичности делит координатную плоскость на две области: деформации (ниже линии) и разрушения (выше линии). Если траектория оказывается выше линии, то вероятность разрушения близка к единице. По данным диаграммы (фиг. 5) при прошивке при угле подачи валков 15 градусов (траектория 1 на фиг. 5) в центре заготовки наступает разрушение, при угле подачи 18 градусов (траектория 2 на фиг. 5) разрушение не происходит, что соответствует опытным прошивкам.

Способ прогнозирования разрушения заготовок в процессе обработки металлов давлением с использованием компьютерного моделирования в вычислительной среде конечно-элементного анализа и экспериментальной оценки, отличающийся тем, что по результатам компьютерного моделирования процесса обработки давлением для исследуемой точки заготовки строят траекторию деформации в координатах «накопленная деформация - коэффициент жесткости напряженного состояния», проводят стандартные испытания образцов из материала деформируемой заготовки на растяжение, кручение и сжатие до разрушения образцов при температуре и скорости деформации, соответствующих температуре и скорости деформации исследуемого процесса обработки давлением, по окончании испытаний определяют значения накопленной деформации в момент разрушения, в тех же координатах, в которых строили траекторию, наносят две или три точки, соответствующие результатам стандартных испытаний, откладывая по оси абсцисс 1 для растяжения, 0 для кручения, -1 для сжатия, а по оси ординат значения накопленной деформации, определенные по результатам соответствующих стандартных испытаний, через полученные точки проводят линию предельной пластичности, если траектория деформации оказывается выше линии предельной пластичности, то прогнозируют разрушение в исследуемой точке заготовки, если траектория оказывается ниже линии предельной пластичности, то прогнозируют деформацию без разрушения.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 108.
10.06.2016
№216.015.4478

Высокопрочная коррозионно-стойкая свариваемая сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04,...
Тип: Изобретение
Номер охранного документа: 0002586193
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.476e

Композиционный материал на основе фторгидроксиапатита и частично стабилизированного диоксида циркония для замещения костных дефектов

Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Техническим результатом изобретения является увеличение прочности материалов в системе 40-60 масс. %...
Тип: Изобретение
Номер охранного документа: 0002585954
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7879

Способ получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани

Изобретение относится к области керамических материалов для медицины, которые могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения пористой керамики яичные белки с сахарозой в соотношении 1:1...
Тип: Изобретение
Номер охранного документа: 0002599524
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.9caf

Литейный сплав на основе интерметаллида ni3al и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей газотурбинных двигателей авиационной промышленности, например сопловых и рабочих...
Тип: Изобретение
Номер охранного документа: 0002610577
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9cd4

Способ получения пористой алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов и может быть использовано для изготовления изделий, эксплуатируемых в качестве высокотемпературной теплоизоляции (или теплозащиты), термостойкого огнеприпаса, носителей катализаторов, фильтров для очистки жидких и газовых сред....
Тип: Изобретение
Номер охранного документа: 0002610482
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a359

Способ получения порошкового магнитотвёрдого сплава 30х20к2м2в системы железо-хром-кобальт

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание,...
Тип: Изобретение
Номер охранного документа: 0002607074
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4f2

Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания...
Тип: Изобретение
Номер охранного документа: 0002607743
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a8e2

Резорбируемый пористый кальцийфосфатный цемент

Изобретение относится к фармацевтической промышленности, а именно к резорбируемому пористому кальцийфосфатному цементу для заполнения костных челюстно-лицевых и стоматологических дефектов. Кальцийфосфатный цемент состоит из смеси порошков фосфатов кальция, а именно из железо- или...
Тип: Изобретение
Номер охранного документа: 0002611345
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
Показаны записи 31-40 из 91.
10.03.2015
№216.013.305d

Способ изоляции водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции водопритока в скважину с применением кремнийорганических соединений, может использоваться для изоляции водопритока в добывающих скважинах и регулирования профиля приемистости нагнетательных скважин. Способ...
Тип: Изобретение
Номер охранного документа: 0002543849
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.4474

Способ горячей винтовой раскатки гильз и технологический инструмент для его осуществления

Группа изобретений относится к обработке металлов давлением, а именно к изготовлению горячекатаных труб. Способ включает формоизменение металла в очаге деформации, образованном рабочими валками и короткой оправкой, смонтированной на полом водоохлаждаемом изнутри справочном стержне. Увеличение...
Тип: Изобретение
Номер охранного документа: 0002549022
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.476b

Пуансон для прошивки на прессе

Изобретение относится к обработке металлов давлением и может быть использовано при прошивке заготовок в контейнере на прессах. Пуансон для прошивки выполнен в виде тела вращения с двумя отверстиями. Пуансон имеет переменный наружный диаметр. Указанный диаметр на длине пуансона от его...
Тип: Изобретение
Номер охранного документа: 0002549787
Дата охранного документа: 27.04.2015
10.06.2015
№216.013.50a6

Способ компьютерного проектирования технологического цикла производства металлопродукции

Изобретение относится к компьютерному проектированию технологического процесса производства металлоизделий, состоящего из последовательности процессов: получения заготовки литьем, обработки давлением и термообработки литой заготовки. Технический результат - повышение вариативности...
Тип: Изобретение
Номер охранного документа: 0002552167
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.58a9

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением, а именно к оправке прошивного стана. Длина оправки равна длине прошиваемой заготовки. Уменьшение усилий на оправку, уменьшение разностенности изделий, устранение дефектов непрерывнолитой заготовки обеспечивается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002554238
Дата охранного документа: 27.06.2015
27.07.2015
№216.013.66bb

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес.%

Изобретение относится к области металлургии, в частности к термической обработке магнитотвердых сплавов системы железо-хром-кобальт, используемых при производстве постоянных магнитов. Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес. %...
Тип: Изобретение
Номер охранного документа: 0002557852
Дата охранного документа: 27.07.2015
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
27.05.2016
№216.015.428a

Роликовый подшипник качения

Изобретение относится к области машиностроения, конкретно к подшипникам качения. Наиболее эффективно применение разработанного подшипника в качестве игольчатого роликоподшипника. Роликовый подшипник качения содержит внутреннее кольцо (1) с дорожкой качения (3) и наружное кольцо (9) с дорожкой...
Тип: Изобретение
Номер охранного документа: 0002585437
Дата охранного документа: 27.05.2016
20.08.2016
№216.015.4f03

Устройство для изготовления цилиндрических заготовок формы стакан

Изобретение относится к области прокатки заготовок сплошного сечения с прошивкой глухого отверстия посредством центральной оправки. Устройство включает установленные в технологической последовательности устройства: бункер, транспортер, печь индукционного нагрева, трехвалковый прокатный стан,...
Тип: Изобретение
Номер охранного документа: 0002595182
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.55b2

Способ определения пористости металлоизделий

Изобретение относится к области обработки металлов давлением, а именно к определению пористости металлоизделия, полученного обработкой давлением литого изделия, и может быть использовано для определения влияния обработки давлением на пористость получаемого металлоизделия. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002593525
Дата охранного документа: 10.08.2016
+ добавить свой РИД