×
01.06.2023
223.018.751e

Результат интеллектуальной деятельности: Способ прогнозирования разрушения заготовок в процессе обработки металлов давлением

Вид РИД

Изобретение

Аннотация: Изобретение относится к области обработки металлов давлением. Способ прогнозирования разрушения заготовок в процессах обработки металлов давлением основан на использовании компьютерного моделирования в вычислительной среде конечно-элементного анализа и экспериментальной оценки. Проводится компьютерное моделирование исследуемого процесса обработки металлов давлением, по результатам для исследуемой точки заготовки строят траекторию в координатах «накопленная деформация - коэффициент жесткости напряженного состояния». Проводят стандартные испытания образцов из материала деформируемой заготовки в исследуемом процессе, по окончанию которых определяют значения накопленной деформации в момент разрушения. В тех же координатах, в которых строили траекторию, наносят две или три точки, соответствующие результатам стандартных испытаний, откладывая по оси абсцисс 1 для растяжения, 0 для кручения, -1 для сжатия. По оси ординат откладывают значения накопленной деформации, определенные по результатам соответствующих стандартных испытаний. Через полученные точки проводят линию, получая линию предельной пластичности. В результате обеспечивается определение областей в объеме деформированной заготовки, которые либо наиболее склонны к разрушению, либо в которых произойдет разрушение. 5 ил., 1 табл.

Изобретение относится к области обработки металлов давлением, а именно к способам прогнозирования разрушения заготовок в процессах обработки металлов давлением.

Известен способ прогнозирования разрушения с помощью вычислительной среды конечно-элементного анализа QForm с использованием нормализованного критерия разрушения Кокрофта-Лэтэма (Конечно-элементное моделирование технологических процессов ковки и объемной штамповки: учебное пособие / [А.В. Власов и др.]; под ред. А.В. Власова. - Москва: Издательство МГТУ им. Н.Э. Баумана, 2019. - 383, [1] с.: ил., с. 324-325). Недостатком данного способа является то, что далеко не всегда известно критическое значение используемого критерия разрушения. Для каждого материала критическое значение свое. Также к недостаткам данного способа может быть отнесено то, что использование нормализованного критерия разрушения Кокрофта-Лэтэма, как показывают исследования, неэффективно для прогнозирования разрушения в некоторых процессах обработки металлов давлением, например, при трехвалковой радиально-сдвиговой прокатке.

Известен способ прогнозирования разрушения с помощью вычислительной среды конечно-элементного анализа QForm с использованием модели разрушения Гурсо-Твергарда-Нидельмана (Конечно-элементное моделирование технологических процессов ковки и объемной штамповки: учебное пособие / [А.В. Власов и др.]; под ред. А.В. Власова. - Москва: Издательство МГТУ им. Н.Э. Баумана, 2019. - 383, [1] с.: ил., с. 326-327 и Власов Ан. В., Герасимов Д.А. Реализация модели Гурсо-Твергарда-Нидельмана для расчетов процессов холодной объемной штамповки несжимаемых материалов // Известия высших учебных заведений. Машиностроение. 2017. №8 (689). С. 8-17.). Недостатком указанного способа является необходимость определения трех констант материала, а также то, что для каждого материала критическое значение, рассчитываемое с помощью используемой модели, свое и не всегда известно. Это затрудняет процесс прогнозирования разрушения и определения его точных размеров.

Известен способ прогнозирования разрушения с помощью вычислительной среды конечно-элементного анализа Forge с использованием усовершенствованной модели разрушения Лемэтра (S. Fanini, "Modelling of the Marnnesmann Effect in Tube Piercing", Ph.D. Thesis, University of Padua, 2008). Недостатком данного способа является определение констант материала, используемых в модели разрушения, экспериментальным путем, что связано с существенными материальными и временными затратами. Эффективность данного способа (по объему прогнозируемого разрушения) продемонстрирована только для одного способа обработки металлов давлением - двухвалковой винтовой прокатки, и только для одного режима деформации. Разрушение, прогнозируемое с помощью данного способа, начинается в области заготовки, отличной от той, в которой разрушение начинается в реальных процессах двухвалковой винтовой прокатки.

Известен способ прогнозирования разрушения с помощью вычислительной среды METFOR для процесса двухвалковой винтовой прошивки (Berazategui, D.A., Cavaliere, М.A., Montelatici, L. and Dvorkin, Е.N. On the modelling of complex 3D bulk metal forming processes via the pseudo-concentrations technique. Application to the simulation of the Mannesmann piercing process // International Journal for Numerical Methods in Engineering. 2006. Vol. 65. No 7. pp 1113-1144). Недостатком указанного способа является то, что его эффективность не оценивали путем сравнения с результатами опытных прошивок по объему и размерам разрушения.

Известен способ прогнозирования деформируемости и разрушения заготовок (Белевитин В.А. Разработка и совершенствование методов экспериментальной механики для оптимизации технологических процессов обработки металлов давлением. Диссертация на соискание ученой степени доктора технических наук. ОАО «Уфалейский завод металлургического машиностроения», г. Верхний Уфалей, Челябинская область, 1997 г.). Недостатком данного способа является то, что необходимо использовать слоистые заготовки, из которых успешно деформируется (без расслоения или разрушения) лишь каждая пятая. Процесс обработки результатов экспериментальных исследований связан с существенными временными затратами.

Техническим результатом изобретения является определение областей в объеме деформированной заготовки, которые либо наиболее склонны к разрушению, либо в которых произойдет разрушение.

Технический результат достигается тем, что исследуемый процесс обработки давлением моделируют с помощью вычислительной среды конечно-элементного анализа, по окончании компьютерного моделирования для исследуемой точки заготовки строят траекторию в координатах «накопленная деформация - коэффициент жесткости напряженного состояния», в этих же координатах строят линию предельной пластичности. Если траектория оказывается выше линии предельной пластичности, то прогнозируют разрушение в исследуемой точке заготовки, если траектория оказывается ниже линии предельной пластичности, то разрушение в исследуемой точке не прогнозируют. При этом способ обладает универсальностью в плане его применения для анализа различных способов обработки металлов давлением и вариативностью, то есть не зависит от того, какая вычислительная среда конечно-элементного анализа используется для прогнозирования разрушения. В отличие от многих существующих способов в рамках разработанного способа используемые для расчетов параметры - интенсивность скорости деформации, среднее напряжение, интенсивности напряжений - рассчитываются всеми широко используемыми в настоящее время вычислительными средами конечно-элементного анализа: DEFORM, QForm, Forge®NxT, Simufact.forming, Abaqus, Ansys и др. Например, в QForm, и накопленная деформация, и коэффициент жесткости, рассчитываются непосредственно самой средой, данные легко импортируются в сторонние приложения для построения указанной выше траектории и линии предельной пластичности, которая строится с учетом результатов стандартных испытаний. Если же значения накопленной деформации и коэффициента жесткости напряженного состояния непосредственно вычислительной средой не рассчитываются, то из вычислительной среды экспортируются данные об изменении интенсивности скорости деформации, среднего напряжения и интенсивности напряжений. Интенсивность скорости деформации численно интегрируется по времени для получения значений накопленной деформации, а среднее напряжение делится на интенсивность напряжений для получения значений коэффициента жесткости напряженного состояния.

Технический результат достигается на примере прогнозирования разрушения при двухвалковой винтовой прошивке в стане с направляющими линейками. Экспериментальные исследования процесса прошивки полых заготовок с дном выполнены на опытно-промышленном стане МИСиС-130Д. В качестве исходного материала использовался горячекатаный пруток из стали 50 диаметром 31 мм, который разрезался на штучные заготовки длиной 85 мм на ленточной пиле.

Перед прошивкой заготовки в вертикальном положении нагревали в камерной электрической печи сопротивления до температуры 1150°С в течении 15…20 минут. Время транспортировки нагретых заготовок от печи до входной стороны прошивного стана составляло 2…4 с.

Прошивка выполнялась на двух разных настройках прошивного стана, обеспечивающих получение одинаковых геометрических размеров гильз (таблица 1).

В соответствии с размерами рабочего инструмента и заготовки создали их 3D модели в SolidWorks. Также создали 3D модели направляющих с входной и выходной стороны. Из моделей создали сборку (фиг. 1), состоящую из: валков (1, 2), линеек (3, одна из линеек для удобства на фиг. 1 не показана), заготовки (4), толкателя (5). Направляющей с входной стороны (6), направляющей с выходной стороны (7). Сборку сохранили в формате .stl и загрузили в preprocessor DEFORM. Моделирование прошивки выполнялось без учета теплообмена между заготовкой и инструментами. Фактор трения для пар «валок-заготовка» задали равным 1 (по закону Зибеля), для пар «линейка-заготовка» и «оправка-заготовка» равным 0,3, для пар «направляющая-заготовка» и «толкатель-заготовка» равным 0,1. Во время моделирования оправка при контакте с заготовкой вращалась (как и при опытных прокатках). Температуру заготовки перед прокаткой задавали равной 1150°С, марка стали заготовки AISI-1050 (зарубежный аналог стали 50).

По режимам, представленным в табл. 1, была прокатана партия гильз с дном наружным диаметром 33,5 мм и толщиной стенки 6,5 мм (D/S=5,2). Для контроля наличия разрушения отобранные образцы гильз были разрезаны на ленточных пилах в продольной плоскости. Во всех гильзах, прошитых при настройках №1 (табл. 1), зафиксировано разрушение осевой зоны в донной части заготовки непосредственно перед носком оправки (фиг. 2). В гильзах, прокатанных по режиму №2 (табл. 1) разрушение перед носком оправки отсутствовало (фиг. 3)

По результатам компьютерного моделирования оценили какие значения принимают параметры напряженно-деформированного состояния в точке перед носком оправки. Для этого в постпроцессоре DEFORM выбрали точку (фиг. 4) как для варианта моделирования прошивки с углом подачи 15 градусов, так и для варианта моделирования с углом подачи валков 18 градусов. Рассчитали значения коэффициента жесткости напряженного состояния. Для этого использовали значения параметров «mean stress» (среднее напряжение) и «stress effective)) (интенсивность напряжений), рассчитанные с помощью постпроцессора DEFORM. Также рассчитали значения накопленной деформации. С помощью инструментария постпроцессора DEFORM рассчитали изменение по времени интенсивности скорости деформации («strain rate effective))). Результаты расчета загрузили в Microsoft Excel, численно проинтегрировали по времени, получив значения накопленной деформации на каждом шаге расчета. В координатах «накопленная деформация-коэффициент жесткости напряженного состояния» построили траектории деформации при прошивках с углами подачи 15 и 18 градусов для выбранных точек.

Провели стандартные испытания образцов из стали 50 на растяжение, кручение и сжатие на универсальной испытательной машине Gleeble 3800 при температуре 1150°С и скорости деформации 1 с-1, что соответствует опытным прошивкам, до разрушения образцов. По окончании испытаний определяли степень деформации в момент разрушения. При испытании на растяжение степень деформации составила 1,16, при испытании на сжатие - 0,937, то есть отношение конечной высоты образца к исходной составила 0,063. Угол сдвига на поверхности разрушенного при испытании на кручение образца составил 72 градуса. Значение накопленной деформации при растяжении рассчитывали по формуле:

где - накопленная деформация, ε - степень деформации в момент разрушения. Значение накопленной деформации при кручении рассчитывали по формуле:

где - накопленная деформация, α - угол сдвига на поверхности разрушенного образца.

Значение накопленной деформации при сжатии рассчитывали по формуле:

где - накопленная деформация, η - коэффициент жесткости напряженного состояния при сжатии, равняется -1, Н0 - начальная высота образца, мм, Н - высота образца в момент появления разрушения.

В тех же координатах, в которых строили траектории (фиг. 5), построили три точки, соответствующие растяжению, кручению и сжатию, с координатами по оси абсцисс 1 (для растяжения), 0 (для кручения) и -1 (для сжатия). По оси ординат отложили соответствующие каждому испытанию значения накопленной деформации: 0,77 для растяжения, 1,74 для кручения, 2,76 для сжатия. Получили три точки (фиг. 5). Используя эти точки с помощью Microsoft Excel построили ломаную линию, получив гипотетический вид линии предельной пластичности (линия 3 на фиг. 5). Линия предельной пластичности делит координатную плоскость на две области: деформации (ниже линии) и разрушения (выше линии). Если траектория оказывается выше линии, то вероятность разрушения близка к единице. По данным диаграммы (фиг. 5) при прошивке при угле подачи валков 15 градусов (траектория 1 на фиг. 5) в центре заготовки наступает разрушение, при угле подачи 18 градусов (траектория 2 на фиг. 5) разрушение не происходит, что соответствует опытным прошивкам.

Способ прогнозирования разрушения заготовок в процессе обработки металлов давлением с использованием компьютерного моделирования в вычислительной среде конечно-элементного анализа и экспериментальной оценки, отличающийся тем, что по результатам компьютерного моделирования процесса обработки давлением для исследуемой точки заготовки строят траекторию деформации в координатах «накопленная деформация - коэффициент жесткости напряженного состояния», проводят стандартные испытания образцов из материала деформируемой заготовки на растяжение, кручение и сжатие до разрушения образцов при температуре и скорости деформации, соответствующих температуре и скорости деформации исследуемого процесса обработки давлением, по окончании испытаний определяют значения накопленной деформации в момент разрушения, в тех же координатах, в которых строили траекторию, наносят две или три точки, соответствующие результатам стандартных испытаний, откладывая по оси абсцисс 1 для растяжения, 0 для кручения, -1 для сжатия, а по оси ординат значения накопленной деформации, определенные по результатам соответствующих стандартных испытаний, через полученные точки проводят линию предельной пластичности, если траектория деформации оказывается выше линии предельной пластичности, то прогнозируют разрушение в исследуемой точке заготовки, если траектория оказывается ниже линии предельной пластичности, то прогнозируют деформацию без разрушения.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 108.
27.07.2015
№216.013.66bb

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес.%

Изобретение относится к области металлургии, в частности к термической обработке магнитотвердых сплавов системы железо-хром-кобальт, используемых при производстве постоянных магнитов. Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес. %...
Тип: Изобретение
Номер охранного документа: 0002557852
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67c9

Способ получения смешанного коагулянта из минерального сырья

Изобретение относится к химической промышленности. Смешанный коагулянт из минерального сырья получают путем растворения бемит-каолинитового боксита в автоклаве соляной кислотой концентрацией 220 г/л при соотношении Т:Ж=1:6 в течение 1-3 часов в интервале температур 150-180°C. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002558122
Дата охранного документа: 27.07.2015
20.11.2015
№216.013.9278

Композиционный керамический материал и способ его получения

Изобретение относится к композиционным керамическим материалам конструкционного назначения и способу его получения. Материал может быть использован для изготовления высокопрочных изделий, преимущественно в медицинской области в качестве эндопротезов суставов. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002569113
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.98a2

Керамический материал с низкой температурой спекания на основе кубического диоксида циркония

Изобретение относится к области получения высокоплотной керамики на основе кубического диоксида циркония и может быть использовано в качестве износостойких изделий, а также в качестве твёрдого электролита. Керамический материал на основе кубического диоксида циркония, стабилизированного 8 мол.%...
Тип: Изобретение
Номер охранного документа: 0002570694
Дата охранного документа: 10.12.2015
27.12.2015
№216.013.9e17

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Разработанные материалы могут быть использованы для получения износостойких изделий, режущего инструмента, керамических подшипников, медицинских нерезорбируемых имплантатов....
Тип: Изобретение
Номер охранного документа: 0002572101
Дата охранного документа: 27.12.2015
10.03.2016
№216.014.c0bc

Высокопрочная коррозионностойкая сталь переходного класса

Изобретение относится к области металлургии, а именно к высокопрочным коррозионностойким сталям переходного класса, используемым для изготовления высоконагруженных деталей и конструкций в машиностроении и судостроении, работающих в условиях воздействия коррозионной среды. Сталь содержит в...
Тип: Изобретение
Номер охранного документа: 0002576773
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c6cf

Способ получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани

Изобретение относится к медицине, конкретно к способу получения пористой керамики, которая может использоваться в реконструктивно-пластической хирургии в качестве материала для замещения костных дефектов, в стоматологии. Пористую керамику из фосфатов кальция изготавливают, используя операции...
Тип: Изобретение
Номер охранного документа: 0002578435
Дата охранного документа: 27.03.2016
27.05.2016
№216.015.42be

Способ получения биодеградируемого полимерного покрытия с контролируемым выходом лекарственного средства для малоинвазивной хирургии

Изобретение относится к медицине, а именно малоинвазивной медицине. Способ получения биодеградируемого полимерного покрытия для контролируемого выхода лекарственного средства включает растворение хитозана в кислотах, добавление лекарственного средства, окунание проволоки из никелида титана в...
Тип: Изобретение
Номер охранного документа: 0002585576
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4370

Композиционный материал на основе сплавов системы sn-sb-cu и способ его получения

Изобретение относится к области металлургии, а именно к композиционным материалам (КМ) на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении. Композиционный...
Тип: Изобретение
Номер охранного документа: 0002585588
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.443c

Способ получения кальцийфосфатного цемента для заполнения дефектов костной ткани

Изобретение относится к области медицины и касается способа получения цементных материалов для пластической реконструкции поврежденных костных тканей. Цементный материал получают смешением порошка трикальцийфосфата и затворяющей жидкости на основе водного раствора фосфатов магния и калия. После...
Тип: Изобретение
Номер охранного документа: 0002585575
Дата охранного документа: 27.05.2016
Показаны записи 21-30 из 91.
27.10.2014
№216.013.022f

Способ очистки скважины от асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности и может применяться для очистки скважин от асфальтосмолопарафиновых отложений. Колонну труб спускают в скважину на глубину от 1 до 10 м от забоя, к первой затрубной задвижке монтируют нагнетательную линию и обвязывают ее с насосным...
Тип: Изобретение
Номер охранного документа: 0002531957
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.024b

Способ обработки обводненной горизонтальной скважины, эксплуатирующей карбонатный трещинно-поровый коллектор

Изобретение относится к нефтедобыче. Технический результат - снижение обводненности продукции скважины на 20-70% и увеличение дебита нефти в 1,5-2 раза. Способ обработки обводненной горизонтальной скважины, эксплуатирующей карбонатный трещинно-поровый коллектор, включает спуск колонны труб в...
Тип: Изобретение
Номер охранного документа: 0002531985
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.0683

Способ получения порошковых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов системы железо-хром-кобальт. Шихту, содержащую порошки железа, хрома, кобальта, легирующие добавки и до 15 мас.% нанопорошков железа, хрома и кобальта, формуют с получением...
Тип: Изобретение
Номер охранного документа: 0002533068
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a1d

Способ цементирования зон водопритока скважин

Предложение относится к нефтедобывающей промышленности, в частности к области цементирования зон водопритока в скважинах. Способ цементирования зон водопритока скважин включает спуск в скважину колонны насосно-компрессорных труб (НКТ), установку открытого конца НКТ выше зоны водопритока....
Тип: Изобретение
Номер охранного документа: 0002533997
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0bf9

Способ получения спечённых магнитотвёрдых сплавов системы железо-хром-кобальт

Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов на основе системы железо-хром-кобальт. Готовят шихту, содержащую порошки железа, хрома, кобальта и легирующих элементов, и проводят ее механоактивацию в планетарной шаровой...
Тип: Изобретение
Номер охранного документа: 0002534473
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.10f6

Способ обработки призабойной зоны скважины

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для очистки скважин. На устье монтируют нагнетательную линию, проходящую через теплообменное устройство, которое обвязывают с паропередвижной установкой и автоцистернами с растворителем и технологической...
Тип: Изобретение
Номер охранного документа: 0002535765
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.1446

Способ получения прутков и способ получения тонкой проволоки из сплава системы никель-титан с эффектом памяти формы

Группа изобретений относится к технике производства тонких прутков и проволоки, обладающих эффектом «памяти» формы и сверхупругостью из сплавов системы никель-титан с эффектом «памяти» формы, используемых в авиации, радиоэлектронике, медицине, космической технике, машиностроении и других...
Тип: Изобретение
Номер охранного документа: 0002536614
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1894

Устройство для уплотнения кабеля погружного насоса и капиллярного трубопровода на устье скважины

Изобретение относится к эксплуатации скважин для уплотнения кабелей на устье скважины. Техническим результатом является повышение эффективности добычи нефти за счет снижения образований асфальтосмолопарафинов и солей на насосном оборудовании и коррозии нефтепромыслового оборудования путем...
Тип: Изобретение
Номер охранного документа: 0002537720
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2423

Способ изоляции зон водопритока в скважине

Предложение относится к нефтедобывающей промышленности, в частности к способам изоляции зон водопритока в скважине. Способ изоляции зон водопритока в скважине включает спуск в эксплуатационную колонну на насосно-компрессорных трубах (НКТ) перфорированного патрубка. Закачивают в НКТ...
Тип: Изобретение
Номер охранного документа: 0002540704
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2d86

Способ переработки упорных урановых руд, содержащих браннерит

Изобретение относится к способу переработки труднообогатимых упорных урановых руд, содержащих браннерит. Способ заключается в том, что измельченную до крупности минус 0,3 мм руду обрабатывают 1-40% раствором бифторида аммония при соотношении Т:Ж=1:(1-5) и температуре 50-80°C в течение 1-4...
Тип: Изобретение
Номер охранного документа: 0002543122
Дата охранного документа: 27.02.2015
+ добавить свой РИД