×
30.05.2023
223.018.7402

Результат интеллектуальной деятельности: Способ активации регенераторного потенциала стромально-васкулярной фракции жировой ткани низкоинтенсивным лазерным излучением красного диапазона

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, биотехнологии, способу активации регенераторного потенциала клеток стромально-васкулярной фракции жировой ткани (СВФ). Способ включает забор ЖТ методом липосакции из живого организма и выделение СВФ. Выделенную клеточную СВФ разводят в растворе Хартмана из расчета 2 млн клеток на 50 мкл раствора и переносят в лунки стерильного 96-луночного планшета, который помещают в ламинарный шкаф на время облучения. Облучают клетки СВФ ЖТ лазером длиной волны 635 нм с помощью аппарата «Лазмик-Влок» с лазерной излучающей головкой КЛ-ВЛОК-635 с выходной мощностью 2 мВт, которую устанавливают над лунками планшета с инкубируемыми клетками в ламинарном шкафу. Используют частоту излучения 10000 Гц, время экспозиции 110 сек или 220 сек при плотности энергии (ПЭ) 0,7 или 1,4 Дж/см, соответственно. По окончании облучения СВФ переносят в стерильные пробирки и разводят в растворе Хартмана из расчета 20 млн клеток на 1 мл раствора. Необходимый для введения в живой организм объем клеток переносят в стерильный шприц для последующего использования. Способ дает возможность запуска активации пролиферативного ответа фибробластоподобных клеток в зависимости от спектра и интенсивности излучения. 1 ил., 1 пр.

Изобретение относится к медицине, биотехнологии и регенеративной медицине и может найти свое применение при лечении широкого спектра дегенеративных заболеваний или травм различной этиологии у людей со сниженным потенциалом собственных регенеративных клеток.

В настоящее время в лечебных и лечебно-профилактических учреждениях активно применяют разнообразные физические факторы в рамках медицинской реабилитации. За счет широкого спектра терапевтического действия, включающего в себя противовоспалительное и противоотечное, стимуляцию нервно-мышечного аппарата, восстановление обменных процессов в тканях, методы физиотерапии являются неотъемлемой частью программ медицинской реабилитации [1, 2]. Несмотря на развитие новых высокоэффективных методов оказания медицинской помощи и физиотерапевтических технологий, лечение не всегда приносит ожидаемые результаты. Кроме того, патологические состояния могут приобретать хронический характер. В этом случае необходимы новые подходы, используемые, в частности, в регенеративной медицине.

Многочисленные исследования показывают, что применение мультипотентных мезенхимальных стромальных клеток (ММСК) оказывает выраженный терапевтический эффект при лечении дегенеративно-дистрофических заболеваний [3]. Несмотря на то, что применение ММСК костного мозга считается «золотым стандартом» клеточной терапии, одним из недостатков использования данного метода является длительный период культивирования клеток для получения необходимой клеточной массы. В связи с этим, в последнее время все большее внимание уделяют клеточным продуктам жировой ткани (ЖТ), в частности ее стромально-васкулярной фракции (СВФ) [4]. В регенеративной хирургии применение СВФ успешно зарекомендовало себя при лечении тяжелых повреждений кожи (ожогов и трофических язв), восстановлении связок [5].

Входящие в состав СВФ ядросодержащие клетки, включая ММСК, обладают выраженной секреторной активностью. Они продуцируют широкий спектр проангиогенных факторов, включая цитокины и факторы роста: FGF, HGF, VEGF, TGFβ, GM-, IL-6, 8, 17, NGF, TIMP-1, TIMP-2, ангиогенин, ангиопоэтин-1, плацентарный фактор роста. При этом в процессе регенерации гормоны, цитокины и факторы роста регулируют важные для восстановления ткани процессы - пролиферацию и дифференцировку клеток путем действия через специфические системы рецепции [6]. Так, например, в опытах на экспериментальной модели ишемии задних конечностей у крыс было показано паракринное действие клеток СВФ в области трансплантации на васкуляризацию тканей [7].

Культивируемые ММСК характеризуются относительно невысокой скоростью пролиферации, особенно - при получении клеточного материала от пациентов с разными видами патологии или пожилых пациентов [8]. В связи с этим ведется разработка методов, способных ускорить процесс клеточной пролиферации, в том числе применение низкоинтенсивного лазерного излучения (НИЛИ), терапевтический эффект которого связывают со стимулирующим эффектом на пролиферацию клеток и регенерацию тканей и который определяется параметрами применяемого излучения [9, 10].

Использование клеток, находящихся в относительно неактивном состоянии, например, при голодании, или клеток, полученных от больных пациентов, а также применение стимуляторов (например, эпидермального фактора роста) может существенно усиливать стимулирующий эффект излучения [11]. Способ активации пролиферативного потенциала регенеративных клеток человека путем воздействия цитокинов и факторов роста получил широкое распространение [12]. Так, например, показано, что применение цитокинов в концентрациях, не превышающих физиологических норм и близких к средним значениям, сопровождается увеличением пролиферации и дифференцировки Т- и В-лимфоцитов, обеспечивающих адаптивный иммунитет [13].

Установлено, что терапевтический эффект от применения низкоинтенсивного лазерного излучения (НИЛИ) определяется параметрами излучения, включая тип используемого лазера, длину волны, плотность энергии облучения и время экспозиции [Dompe C., Moncrieff L., Matys J., Grzech-Leśniak K., Kocherova I., Bryja A., Bruska M., Dominiak M., Mozdziak P., Skiba T.H.I., Shibli J.A., Angelova Volponi A., Kempisty B., Dyszkiewicz-Konwińska M. Photobiomodulation-Underlying Mechanism and Clinical Applications. Journal of Clinical Medicine. 2020; 9(6): 1724. https://doi.org/10.3390/jcm9061724]. Показана хорошая терапевтическая эффективность применения НИЛИ в диапазоне длин волн от 500 нм до 1100 нм, при мощности излучения от 1 мВт до 500 мВт и плотности потока энергии от 0,05 Дж/см2 до 50 Дж/см2 [Volodina Y.L., Puzyreva G.A., Konchugova T.V., Il'inskaya G.V. Mekhanizmy biologicheskogo deystviya i perspektivy primeneniya nizkointensivnogo lazernogo izlucheniya v meditsine. [Mechanisms of biological action and prospects for the use of low-intensity laser radiation in medicine]. Sistemnyy analiz i upravleniye v biomeditsinskikh sistemakh. 2017; 16(4): 767-775]. Получены также клинические данные о положительном терапевтическом эффекте НИЛИ красного и инфракрасного диапазонов на процесс заживления ран различной этиологии. Так, при лечении ожоговых ран положительные результаты были получены от применения НИЛИ с длиной волны от 632,8 до 1000 нм при плотности потока энергии от 3 Дж/см2 до 6 Дж/см2, в то время как использование излучения с плотностью потока энергии 10 Дж/см2 оказывало негативный эффект на процесс заживления ран [de Andrade A.L.M., Luna G.F., Brassolatti P., Leite M.N., Parisi J.R., de Oliveira Leal Â.M., Frade M.A.C., de Freitas Anibal F., Parizotto N.A. Photobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Revista do Colégio Brasileiro de Cirurgiões /Journal of Brazilian College of Surgeons. 2014; 41(2): 129-133].

Известен способ активации мультипотентных стромальных клеток костного мозга лазерным и КВЧ-излучением, а также их сочетанным воздействием. Объектами исследования являлись ММСК костного мозга человека, морской свинки, кролика и крысы. Исследования in vivo проводили на крысах породы Wistar путем облучения обнаженной от тканей поверхности большой берцовой кости с мощностью лазерного излучения 0,1; 0,2; 0,6 и 1,2 Вт. Для исследования in vitro использовали излучение He-Ne лазера, акустические импульсы и КВЧ-излучение. Результаты исследования показали, что эффект воздействия преформированными физическими факторами существенно зависит от состояния клеточной культуры и увеличивает пролиферативную активность клеток, находящихся только в «ослабленном» состоянии. Однако использование данной технологии достаточно специфично, и при увеличении времени экспонирования достигается обратный эффект, вплоть до полного ингибирования роста клеточной культуры [14].

Наиболее близким аналогом (прототипом) предлагаемого способа является способ активации пролиферативного ответа фибробластоподобных клеток СВФ ЖТ [15]. Путем ферментативной обработки ЖТ выделяют СВФ, определяют активность ферментов глюкозо-6-фосфатдегидрогеназы (Г6ФДГ), лактатдегидрогеназы (ЛДГ) и малатдегидрогеназы (МДГ). При заниженных показателях ферментов добавляют необходимое количество субстратов, активности которых снижены: глюкозо-6-фосфата в количестве 2,12 мг/мл при активности Г6ФДГ ниже 84,3 мкЕ/104, глицеральдегид-3-фосфата в количестве 0,45 мг/мл при активности ЛДГ ниже 250,42 мкЕ/104, глутаминовой кислоты в количестве 1,6 мг/мл при активности МДГ ниже 212,34 мкЕ/104. Указанный метод способен оценить состояние метаболизма фибробластоподобных клеток и ускорить деление и дифференцировку фибробластопобных клеток СВФ. К недостаткам этого метода можно отнести наличие долгого и трудоемкого этапа культивирования клеток. Следует отметить наличие возможных рисков, связанных с этим этапом получения биомедицинского клеточного продукта, в частности - риск контаминирования культивируемых клеток.

Технический результат предлагаемого способа:

- Возможность за 0,5 часа увеличить пролиферативную активность регенеративных клеток СВФ ЖТ более чем на 30% (это время включает продолжительность всей процедуры от момента окончания выделения СВФ до помещения обработанных лазером клеток в необходимой для последующего применения концентрации в стерильный шприц).

- Получение активированных регенеративных клеток СВФ ЖТ даже при их изначально сниженной пролиферативной активности.

- Возможность запуска активации пролиферативного ответа клеток СВФ ЖТ в зависимости от спектра и интенсивности применяемого воздействия лазерным излучением.

Для достижения данного технического результата предложен способ повышения регенеративной активности стромально-васкулярной фракции (СВФ) жировой ткани (ЖТ) лазерным излучением красного диапазона, включающий забор ЖТ методом липосакции из живого организма и выделение СВФ. Выделенную клеточную СВФ разводят в растворе Хартмана из расчета 2 млн клеток на 50 мкл раствора и переносят в лунки стерильного 96-луночного планшета, который помещают в ламинарный шкаф на время облучения.

Облучают клетки СВФ ЖТ лазером длиной волны 635 нм с помощью аппарата «Лазмик-Влок» с лазерной излучающей головкой КЛ-ВЛОК-635 с выходной мощностью 2 мВт, которую устанавливают над лунками планшета с инкубируемыми клетками в ламинарном шкафу.

При этом используют следующие параметры лазерного излучения: частота излучения 10 000 Гц, время экспозиции 110 сек или 220 сек при плотности энергии (ПЭ) 0,7 или 1,4 Дж/см2, соответственно. По окончании облучения СВФ переносят в стерильные пробирки и разводят в растворе Хартмана из расчета 20 млн клеток на 1 мл раствора. Необходимый для введения в живой организм объем клеток переносят в стерильный шприц для последующего использования.

Таким образом, задачей настоящего изобретения является создание технологии активации пролиферативного процесса регенераторных клеток СВФ ЖТ. Задача решается следующим образом.

У пациента получают ЖТ методом липосакции. В качестве материала при этом используют образцы ЖТ в форме липоаспирата, полученные при проведении липосакции в клинике пластической хирургии. Все процедуры проводят после получения добровольного информированного согласия пациентов. СВФ выделяют в соответствии с действующими инструкциями.

В частности, для липосакции может быть использован известный метод, описанный в: И.А. Смышляев, С.И. Гильфанов, В.А. Копылов, Р.Г. Гильмутдинов, А.А. Пулин, И.Н. Корсаков, И.Р. Гильмутдинова, А.П. Петрикина, П.С. Еремин, О.В. Крючкова, В.П. Абельцев, Н.В. Загородний, В.Л. Зорин, В.С. Васильев, Д.Ю. Пупынин, И.И. Еремин. Оценка безопасности и эффективности внутрисуставного введения стромально-васкулярной фракции жировой ткани для лечения гонартроза: промежуточные результаты клинического исследования. // Травматология и ортопедия России. Том 23, № 3, 2017. С. 17-31, см. с. 21-22). ЖТ при этом забирали методом стандартной шприцевой тумесцентной липосакции. Область забора ЖТ предварительно инфильтрировали раствором Кляйна, содержащим адреналин, лидокаин и физиологический раствор, через инфильтрационную канюлю диаметром 2 мм длиной 30 см. Время экспозиции жировой ткани в тумесцентной жидкости согласно стандартным рекомендациям составляло 30-40 мин. В качестве донорских зон чаще всего выбирали переднюю брюшную стенку, фланковые области и бедра. Липосакцию выполняли канюлей длиной 250 мм и диаметром 2,5 мм с 14 отверстиями диаметром 1,5 мм. Липоаспират собирался в стерильные шприцы объемом 50 мл, в которых производилось его отстаивание до полного разделения на фракции. Объем жировой ткани составлял 110-150 мл. После удаления жидкой фракции шприцы с ЖТ упаковывали в стерильные пакеты и помещали в транспортный термоконтейнер вместе с сопроводительной документацией. Транспортировку осуществляли в лабораторию при комнатной температуре, в течение 30-60 мин.

Для выделения СВФ из ЖТ в лаборатории в условиях ламинарного шкафа переносили из шприцев в стерильную одноразовую емкость и промывали 3 раза раствором Хартмана (Hemofarm, Сербия). Для ферментативной обработки в емкость добавляли 0,15% раствор коллагеназы 2-го типа (Sigma, США) в количестве, равном объему отмытой ЖТ. Емкость закрывали крышкой и инкубировали в шейкере в течение 30 мин при 37°С. Полученную при этом суспензию фильтровали через сито с диаметром пор 100 мкм, переносили в стерильные пробирки и 3 раза отмывали от коллагеназы раствором Хартмана с последующим центрифугированием в течение 7 мин при 300g. Затем клеточный осадок растворяли в 5 мл раствора Хартмана и отбирали 0,5 мл для паспортизации образца. Оставшиеся 4,5 мл суспензии клеток переносили в стерильный шприц, который маркировали и помещали в стерильную вторичную упаковку. Полученный клеточный продукт СВФ ЖТ может быть транспортирован в течение 30 мин в термоконтейнере для последующего клинического применения. Контрольный образец (0,5 мл) выделенных клеток СВФ ЖТ может быть использован для подсчета количества ядросодержащих клеток с оценкой их жизнеспособности и последующего сравнения образцов в динамике - до и после активации СВФ лазерным излучением.

Известный способ выделения СВФ из липоаспирированной ЖТ также описан в публикации соавторов: Kostromina E., Eremin P., Kondratev D., Veremeev A., Gilmutdinova I. Characterisation of the cell product obtained with the ‘ESVIEF System’ kit for isolation of stromal vascular fraction from human adipose tissue. // Proceedings of the 7th International Conference on Bioinformatics Research and Applications (ICBRA 2020). Association for Computing Machinery, New York, NY, USA, p.66-69. https://doi.org/10.1145/3440067.3440079. Вопросы различных методов выделения СВФ из ЖТ освещены также в публикации: Senesi L., De Francesco F., Farinelli L., Manzotti S., Gagliardi G., Papalia G.F., Riccio M., Gigante A. Mechanical and Enzymatic Procedures to Isolate the Stromal Vascular Fraction From Adipose Tissue: Preliminary Results. Frontiers in Cell and Developmental Biology. 2019; 7: 88. https://doi.org/10.3389/fcell.2019.00088.

Согласно нашим предыдущим исследованиям, проводился сравнительный анализ эффективности применения двух систем для выделения клеточных фракций. Для оценки полученных с их помощью клеточных продуктов использовали ряд параметров: количество ядросодержащих клеток в препарате, их жизнеспособность, пролиферативный потенциал ММСК ЖТ, входящих в состав клеточного продукта. Клеточный продукт, полученный ферментативным способом, характеризовался большим выходом ядросодержащих клеток, а также высоким пролиферативным потенциалом ММСК, выделенных из ЖТ. В клеточном продукте, полученным из ЖТ с помощью механического метода, было обнаружено меньшее количество ядросодержащих клеток, большой объем остаточного масла, соединительная ткань была разрушена. В работе показано, что способ обработки ЖТ (ферментативный или механический) оказывает значительное влияние на характеристики получаемых продуктов (И.Р. Гильмутдинова, Е.Ю. Костромина, А.В. Веремеев, М.В. Путова, П.А. Марков, И.С. Кудряшова, П.С. Еремин. Сравнительная характеристика клеточных продуктов, полученных из жировой ткани при помощи различных систем для выделения клеточных фракций. // Гены & Клетки, том XVI, № 3, 2021, с.80-85. DOI: 10.23868/202110011). Предлагаемый нами способ позволяет усилить пролиферативный (регенераторный) потенциал (активность) клеток СВФ, полученных любым из известных способов.

Основным преимуществом использования ЖТ как источника стволовых клеток является малая инвазивность процедуры забора материала с использованием липосакции, проводимой под местной анестезией, а также значительно большее относительное количество выделяемых МСК на единицу объема ткани по сравнению с костным мозгом. Количество получаемых из ЖТ клеток существенно зависит от используемого метода выделения - механического или ферментативного, области забора ЖТ у пациентов, а также от наличия той или иной патологии у пациентов. СВФ представляет собой гетерогенную популяцию разных типов клеток, полученных в результате седиментации диссоциированной ЖТ, после ее обработки с использованием средств для механического или ферментативного выделения. В состав СВФ входят МСК ЖТ, эндотелиальные и гладкомышечные клетки и их предшественники, фибробласты, макрофаги, лимфоциты и перициты, а также преадипоциты.

Клинический эффект локального введения СВФ может быть связан не только с наличием в ее составе ММСК, но и других клеточных популяций, которые также вносят весомый вклад в репарацию живых тканей. Присутствие в составе клеточного продукта тканевых макрофагов, эндотелия и других клеток в условиях активной секреции ММСК ростовых факторов способствует купированию воспалительных реакций, стимуляции неоангиогенеза, уменьшению выраженности склеротических изменений. Дальнейшее детальное изучение состава СВФ необходимо для понимания механизмов ее терапевтического действия. Также индивидуальная характеристика клеточного продукта позволит установить влияние на терапевтический потенциал таких факторов, как объем липоаспирата, особенности ЖТ различных анатомических локализаций, влияние на состав клеточного продукта пола, возраста пациентов, их вредных привычек и данных анамнеза.

Процесс активации пролиферативной активности регенераторных клеток СВФ является достаточно простым в плане условий и оборудования. Полученную СВФ (4,5 мл) разводят в растворе Хартмана из расчета 2 млн клеток на 50 мкл раствора и переносят в лунки стерильного 96-луночного планшета, помещенного в ламинарный шкаф на время процедуры. Общее время лазерного облучения рассчитывают путем умножения времени экспозиции (110 сек или 220 сек) на количество лунок с клетками.

Для воздействия на клетки СВФ ЖТ лазером красного диапазона (λ=635 нм) используют аппарат «Лазмик-Влок» с лазерной излучающей головкой КЛ-ВЛОК-635 с выходной мощностью 2 мВт, которую устанавливают над ячейками планшета с клетками СВФ. Для увеличения пролиферативной активности используют следующие параметры излучения: длина волны 635 нм, частота излучения 10 000 Гц, время экспозиции - 110 сек или 220 сек при плотности энергии (ПЭ) 0,7 или 1,4 Дж/см2, соответственно. Как было нами установлено, эффективность применения облучения экспозицией 110 сек или 220 сек, при соответствующей плотности энергии, через 24 ч и 48 ч после проведения процедуры была примерно одинакова.

По окончании воздействия обработанную таким образом СВФ переносят в стерильные пробирки и разводят в растворе Хартмана из расчета 20 млн клеток на 1 мл раствора. Необходимый для применения объем клеток переносят в стерильный шприц соответствующего объема для последующего клинического применения для регенерации различных язв, ожоговых ран, иммуномодуляции, лечения воспалений и дегенерации и др.

Поскольку результатом заявляемого решения является получение клеточного продукта СВФ с активированной пролиферативной активностью, зависимой от параметров лазерного излучения, то для оценки степени активации пролиферативного потенциала клеток СВФ ЖТ под действием лазера, достижения указанного технического результата, были проведены следующие эксперименты, с формированием клеточного монослоя.

Пример. После выделения (до лазерного воздействия) клеточную суспензию СВФ ЖТ (за исключением клеток СВФ контрольного образца) пассеровали в 96-луночном планшете из расчета 5×105 кл/см2 и культивировали в инкубаторе до образования монослоя, после чего подвергали воздействию красного лазера (635 нм) в предлагаемом режиме, с предлагаемыми параметрами излучения. Сразу после завершения облучения клеточный монослой повреждали механическим способом, используя для этого стерильный пластиковый наконечник для дозатора на 2-10 мкл. Затем с помощью светового микроскопа оценивали площадь повреждения клеточного монослоя. Повторную микроскопию для оценки динамики восстановления монослоя проводили через 24 ч и 48 ч после облучения. В качестве контроля использовали клетки СВФ, которые не подвергались облучению (контрольный образец/аликвота).

Нами было установлено, что при облучении клеток красным лазером (длина волны 635 нм) при разном времени экспозиции 1; 5; 55; 110; 220; 440 с, и соответствующей величине плотности потока энергии: 0,007; 0,035; 0,35; 0,7; 1,4; 2,8 Дж/см2, соответственно (при мощности излучающей головки 2 МВт и частоте импульсного излучения 10000 Гц), не отмечено значимого влияния на восстановление клеточного монослоя в течение первых 24 часов. Однако через 48 часов площадь повреждения в опытной группе с плотностью потока энергии облучения 0,7 и 1,4 Дж/см2 сокращалась более, чем на 50%, по сравнению с контролем. При этом облучение клеток при потоке энергии 2,8 Дж/см2 полностью ингибировало рост клеток уже в течение первых суток (Рис. 1). Так, на рисунке 1 представлены данные о влиянии лазерного излучения красного спектра (635 нм) при плотности энергии: 0,007; 0,035; 0,35; 0,7; 1,4; 2,8 Дж/см2 на восстановление механически поврежденного клеточного монослоя (в виде среднего арифметического значения ± стандартное отклонение; * - различия достоверны при р<0,05).

Таким образом, процедура обработки СВФ лазерным излучением с определенными параметрами, уменьшая величину области повреждения монослоя клеток СВФ ЖТ, является эффективной, позволяя получить активированные регенеративные клетки для современной регенеративной медицины в достаточно короткий промежуток времени.

Источники информации:

1. Кончугова Т.В., Кульчицкая Д.Б., Иванов А.В. Эффективность методов магнитотерапии в лечении и реабилитации пациентов с заболеваниями суставов с позиции доказательной медицины. Вопросы курортологии, физиотерапии и лечебной физической культуры, 2019, Т. 96, №4, с. 63-68 https://doi.org/10.17116/kurort20199604163.

2. Т.В. Кончугова, Д.Б. Кульчицкая История отдела физиотерапии // Арбатские чтения: Сборник научных трудов. - Москва: Издательство "Знание-М", 2021. - С. 22-40. - DOI 10.38006/00187-092-0.2021.22.40.

3. Pak J., Lee J.H., Park K.S., Park M., Kang L.-W., Lee S.H. Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. Journal of Biomedical Science. 2017; 24(1):9. https://doi.org/10.1186/s12929-017-0318-z.

4. Гильмутдинова И.Р., Костромина Е.Ю., Веремеев А.В., Путова М.В., Марков П.А., Кудряшова И.С., Еремин П.С. Сравнительная характеристика клеточных продуктов, полученных из жировой ткани при помощи различных систем для выделения клеточных фракций. Гены и Клетки. - 2021. - Т. 16. - №3. - С. 80-85. - DOI 10.23868/202110011.

5. Орлова Ю.М., Устюгов А.Ю., Зорина А.И., Зорин В.Л., Поспелов А.Л., Мантурова Н.Е. Клеточные препараты из жировой ткани. Пластическая хирургия и эстетическая медицина. 2019; (3): 62-69; https://doi.org/10.17116/plast.hirurgia201903162.

6. П.И. Макаревич, А.Ю. Ефименко, В.А. Ткачук. Биохимическая регуляция регенеративных процессов факторами роста и цитокинами: основные механизмы и значимость для регенеративной медицины // Биохимия. - 2020. - Т. 85. - №1. - С. 15-33. - DOI 10.31857/S0320972520010029.

7. Лебедев В.Г., Дешевой Ю.Б., Темнов А.А., Астрелина Т.А., Рогов К.А., Насонова Т.А., Лырщикова А.В., Добрынина О.А., Склифас А.Н., Мхитаров В.А., Трофименко А.В., Мороз Б.Б. Изучение эффектов стромально-васкулярной фракции, культивированных стволовых клеток жировой ткани и паракринных факторов кондиционной среды при терапии тяжелых лучевых поражений кожи у крыс. Патологическая физиология и экспериментальная терапия. 2019; 63(1): 24-32. https://doi.org/10.25557/0031-2991.2019.01.24-32.

8. Heeschen C., Lehmann R., Honold J., Assmus B., Aicher A., Walter D.H., Martin H., Zeiher A.M., Dimmeler S. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004; 109(13): 1615-22. https://doi.org/10.1161/01.cir.0000124476.32871.e3.

9. AlGhamdi K.M., Kumar A., Moussa N.A. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers in Medical Science. 2012; 27(1): 237-49. https://doi.org/10.1007/s10103-011-0885-2.

10. Kostromina E., Eremin P.S., Kudryashova I.S., Markov P.A., Gilmutdinova I.R. Konchugova T.V. Bulletin of Rehabilitation Medicine. 2022; 21 (3): 202-211. https://doi.org/10.38025/2078-1962-2022-21-3-202-211.

11. Mvula B., Moore T.J., Abrahamse H. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers in Medical Science. 2010; 25(1): 33-9. https://doi.org/10.1007/s10103-008-0636-1.

12. Система цитокинов. Теоретические и клинические аспекты. / Под ред. акад. РАМН В.А. Козлова и д.м.н. С.В. Сенникова. - Новосибирск: «Наука» 2004.

13. Патракеева В.П. Цитокиновая регуляция пролиферативной активности клеток периферической крови. Экология человека. 2015. №12. С. 28-33.

14. Chailakhyan R.K., Gerasimov Yu.V., Yusupov V.I., Sviridov A.P., Tambiev A.Kh., Vorobieva N.N., Grosheva A.G., Kuralesova A.I., Moskvina I.L., Bagratashvili V.N. Activation of bone marrow multipotent stromal cells by laser and ehf radiation and their combined impacts. Modern Technologies in Medicine. 2017. Т. 9. №1. С. 28-37.

15. Беленюк В.Д., Савченко А.А., Борисов А.Г., Гвоздев И.И. Способ активации пролиферативного ответа фибробластоподобных клеток стромально-васкулярной фракции жировой ткани. 2021. Патент RU 2740152 C1 РФ; №2020100831: заявл. 09.01.2020: опубл. 13.01.2021. Заявитель Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН).


Способ активации регенераторного потенциала стромально-васкулярной фракции жировой ткани низкоинтенсивным лазерным излучением красного диапазона
Источник поступления информации: Роспатент

Показаны записи 21-23 из 23.
20.04.2023
№223.018.4a8b

Способ комплексной санаторно-курортной реабилитации пациентов с рассеянным склерозом при ремиттирующем течении заболевания

Изобретение относится к медицине, а именно к физической реабилитационной медицине, неврологии, санаторно-курортной реабилитации, и может быть использовано для комплексной санаторно-курортной реабилитации пациентов с рассеянным склерозом при ремиттирующем течении заболевания. Проводят...
Тип: Изобретение
Номер охранного документа: 0002782656
Дата охранного документа: 31.10.2022
29.05.2023
№223.018.7268

Способ ударно-волновой терапии шейного отдела позвоночника

Изобретение относится к медицине, а именно к физиотерапии и мануальной терапии, и предназначено для лечения болевых синдромов в шейном отделе позвоночника (ШОП). Способ включает проведение процедур ударно-волновой терапии (УВТ) с использованием спинальной Y-образной насадки: на аппарате УВТ...
Тип: Изобретение
Номер охранного документа: 0002796320
Дата охранного документа: 22.05.2023
16.06.2023
№223.018.7c3c

Применение 1-гидроксигерматрана для торможения развития атеросклероза в эксперименте

Изобретение относится к медицине, фармакологии и биологии и касается применения водного раствора 1-гидроксигерматрана формулы: в качестве средства, понижающего общую активность кислой фосфолипазы A1. Изобретение понижает общую (суммарную) активность лизосомального липолитического фермента –...
Тип: Изобретение
Номер охранного документа: 0002742972
Дата охранного документа: 12.02.2021
Показаны записи 21-30 из 34.
23.04.2023
№223.018.5182

Технология дистанционной медицинской реабилитации пациентов с коронавирусной инфекцией

Изобретение относится к медицине, медицинской технике и реабилитации с помощью компьютерных технологий, инновационных электронных разработок систем дистанционного обучения и лечения, облачных систем и основано на использовании телемедицинской платформы для проведения реабилитационных...
Тип: Изобретение
Номер охранного документа: 0002735722
Дата охранного документа: 06.11.2020
24.04.2023
№223.018.526c

Способ лечения облитерирующего атеросклероза сосудов нижних конечностей

Изобретение относится к медицине, а именно к физиотерапии, ангиологии и может быть использовано для комплексного лечения облитерирующего атеросклероза сосудов нижних конечностей (ОАСНК). Проводят последовательное лазерное воздействие (ЛТ) с последующим перерывом на отдых и принятием процедуры...
Тип: Изобретение
Номер охранного документа: 0002740263
Дата охранного документа: 12.01.2021
15.05.2023
№223.018.5905

Способ профилактики постхолецистэктомического синдрома

Изобретение относится к медицине, а именно к физиотерапии, и может быть использовано для профилактики развития постхолецистэктомического синдрома (ПХЭС) после лапароскопической холецистэктомии (ЛХЭ). Воздействуют инфракрасным лазерным излучением на 1-2 день после операции. На фоне соблюдения...
Тип: Изобретение
Номер охранного документа: 0002760538
Дата охранного документа: 26.11.2021
15.05.2023
№223.018.5d1e

Способ физиотерапии аносмии после коронавирусной инфекции

Изобретение относится к медицине, а именно к физиотерапии, отоларингологии и неврологии, и может быть использовано для физиотерапии аносмии после перенесенной коронавирусной инфекции. Последовательно воздействуют комплексом физиотерапевтических методов. Вначале проводят интраназальный...
Тип: Изобретение
Номер охранного документа: 0002751823
Дата охранного документа: 19.07.2021
15.05.2023
№223.018.5d1f

Способ физиотерапии аносмии после коронавирусной инфекции

Изобретение относится к медицине, а именно к физиотерапии, отоларингологии и неврологии, и может быть использовано для физиотерапии аносмии после перенесенной коронавирусной инфекции. Последовательно воздействуют комплексом физиотерапевтических методов. Вначале проводят интраназальный...
Тип: Изобретение
Номер охранного документа: 0002751823
Дата охранного документа: 19.07.2021
15.05.2023
№223.018.5d82

Способ лечебной ходьбы в воде

Изобретение относится к санаторно-курортной, медицинской и физической реабилитации, бальнеотерапии, медицинской технике, лечебным упражнениям в воде, у пациентов с двигательными нарушениями вследствие ортопедических проблем (болезни суставов, позвоночника), сердечно-сосудистых или...
Тип: Изобретение
Номер охранного документа: 0002757962
Дата охранного документа: 25.10.2021
15.05.2023
№223.018.5d83

Способ лечебной ходьбы в воде

Изобретение относится к санаторно-курортной, медицинской и физической реабилитации, бальнеотерапии, медицинской технике, лечебным упражнениям в воде, у пациентов с двигательными нарушениями вследствие ортопедических проблем (болезни суставов, позвоночника), сердечно-сосудистых или...
Тип: Изобретение
Номер охранного документа: 0002757962
Дата охранного документа: 25.10.2021
16.05.2023
№223.018.5de6

Способ лечения пациентов с пояснично-крестцовой дорсопатией методом локальной стимуляции «анатомическая дорожка»

Изобретение относится к медицине, а именно к неврологии, рефлексотерапии, медицинской реабилитации, и может быть использовано для лечения пациентов с дорсопатией на пояснично-крестцовом уровне. Осуществляют внутрикожное введение анестетика – 1% раствора лидокаина в дозе 0,1 млв биологически...
Тип: Изобретение
Номер охранного документа: 0002758988
Дата охранного документа: 08.11.2021
16.05.2023
№223.018.5de7

Способ лечения пациентов с пояснично-крестцовой дорсопатией методом локальной стимуляции «анатомическая дорожка»

Изобретение относится к медицине, а именно к неврологии, рефлексотерапии, медицинской реабилитации, и может быть использовано для лечения пациентов с дорсопатией на пояснично-крестцовом уровне. Осуществляют внутрикожное введение анестетика – 1% раствора лидокаина в дозе 0,1 млв биологически...
Тип: Изобретение
Номер охранного документа: 0002758988
Дата охранного документа: 08.11.2021
16.05.2023
№223.018.6154

Способ использования виртуальной цифровой модели ходьбы пациента для дифференцированного построения индивидуальной программы физической реабилитации в раннем восстановительном периоде ишемического инсульта в зависимости от бассейна поражения

Изобретение относится к области медицины, а именно неврологии, кинезиологии, нейрофизиологии, медицинской реабилитации, функциональной диагностике, и может быть использовано в амбулаторных условиях, реабилитационных центрах при диагностике, дифференциальной диагностике, способах исследования...
Тип: Изобретение
Номер охранного документа: 0002741860
Дата охранного документа: 29.01.2021
+ добавить свой РИД