×
30.05.2023
223.018.7353

Результат интеллектуальной деятельности: ТЕРАГЕРЦОВЫЙ СУБВОЛНОВЫЙ СКАНИРУЮЩИЙ МИКРОСКОП

Вид РИД

Изобретение

№ охранного документа
0002767156
Дата охранного документа
16.03.2022
Аннотация: Изобретение относится к измерительной и диагностической технике, более конкретно к ближнеполевой микроскопии в терагерцовой (ТГц) области спектра. Терагерцовый субволновый сканирующий микроскоп содержит непрерывный лазер, гальванометр с зеркалами для х-у сканирования, расширитель пучка, фокусирующую линзу, эмиттер терагерцового излучения, оптический криостат, спектрометр, некогерентный детектор терагерцового излучения, параболические зеркала для сбора и доставки терагерцового излучения к некогерентному детектору терагерцового излучения. Эмиттер помещен в оптический криостат и является предметным столиком для объекта, и выполнен в виде слоя полупроводникового материала, поглощающего излучение лазера. Слой полупроводникового материала расположен на высоколегированной полупроводниковой подложке, прозрачной для лазерного излучения и поглощающей терагерцовое излучение. Микроскоп обеспечивает упрощение конструкции при сохранении разрешающей способности. 4 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной и диагностической технике, а более конкретно к ближнеполевой микроскопии в терагерцовой (ТГц) области спектра. Оно предназначено для диагностики различных объектов при низких температурах с субволновым пространственным разрешением и разрешением по спектру.

Известен терагерцовый субволновый сканирующий микроскоп (см. заявку US 2007181811 A1, МПК G01N 21/3581, опубликована 27.10.2007). Микроскоп состоит из источника терагерцового излучения и системы электрооптического детектирования, включающей пластинку электрооптического кристалла, зондирующий лазер, делитель пучка, балансный детектор и систему обработки данных. Субволновое разрешение достигается за счет локализации области детектирования терагерцового излучения при размещении тонкой пластинки электрооптического кристалла в непосредственной близости к исследуемому объекту и уменьшении размера пятна зондирующего лазера. В этом случае возможна регистрация терагерцового излучения от объекта в ближнем поле. Размер области локализации будет определяться толщиной электрооптического кристалла, его расстоянием до объекта и размером пятна зондирующего лазера на кристалле. Электрооптический кристалл дополнительно помещают в резонатор для усиления терагерцового поля, что несколько повышает чувствительность измерений. Сканирование можно осуществлять за счет перемещения пятна зондирующего лазера по поверхности электрооптического кристалла.

Основным недостатком данного субволнового микроскопа является крайне низкое соотношение сигнал/шум, обусловленное применением ТГц электрооптического детектирования в тонком (субмикронной толщины) электрооптическом кристалле, а также тем, что на детектор поступает только малая доля волнового фронта анализируемого ТГц излучения.

Известен терагерцовый субволновый сканирующий микроскоп (см. заявку PCT/CN 2014/073368, МПК G01N 21/3581, опубликована 2015-02-05). ТГц излучение генерируется в воздухе в условиях распространения в филаменте (в области пробоя воздуха интенсивным лазерным излучением) фемтосекундных импульсов титан сапфирового лазера на основной (800 нм) и второй (400 нм) гармониках. Сверхволновое разрешение достигалось путем расположения керамического предметного столика с изучаемым объектом в непосредственной близости от филамента. Диаметр сканирующего пучка ТГц излучения при этом удавалось получить от 20 до 50 мкм, а пространственное разрешение достигало 20 мкм. Микроскоп состоит из фемтосекундного лазера с длиной волны 800 нм, формирующей оптики, нелинейного кристалла ВВО (бета-бората бария) для генерации второй гармоники лазера, керамического предметного столика, оптической системы для сбора и доставки излучения к детектору, когерентного детектора терагерцового излучения.

Недостатком является необходимость использования дорогостоящего фемтосекундного лазера большой мощности для достижения пробоя воздуха (филаментации) и генерации второй гармоники лазера, а также необходимость когерентного детектирования полезного ТГц сигнала.

Известен терагерцовый субволновый сканирующий микроскоп (см. "Scanning laser terahertz near-field imaging system", K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, N. Yoshimura, Y. Mori, J. Darmo, V. Tonouchi, Optics Express, 20 (12), 12959-12965 (2012)), совпадающий с настоящим решением по наибольшему числу существенных признаков и принятый за прототип. Микроскоп-прототип содержит фемтосекундный лазер с длиной волны 1.56 мкм, гальванометр с зеркалами для х-у сканирования, расширитель пучка, фокусирующую линзу, эмиттер терагерцового излучения в виде тонкой пластинки нелинейного оптического кристалла DASC (4'-dimenthylamino-N-methyl-4-stilbazolium р-chlorobenzenesulfonate) толщиной 200 мкм и размером 10x10 мм2, спектрометр (ТГц спектрометр во временной области), когерентный детектор терагерцового излучения, параболические зеркала для сбора и доставки терагерцового излучения к детектору терагерцового излучения. Эмиттер является предметным столиком для объекта и может быть помещен в оптический криостат.

Сверхволновое разрешение достигается тем, что область возбуждения ТГц излучения в эмиттере располагается практически вплотную к исследуемому объекту, причем размеры зоны локализации ТГц излучения в основном определяются областью фокусировки пучка фемтосекундного лазера и, следовательно, могут быть значительно меньше длины волны ТГц излучения. В данном устройстве было достигнуто пространственное разрешение ТГц изображений порядка 27 мкм, что значительно меньше средней волны ТГц излучения в центре спектра используемого ТГц излучения (порядка 750 мкм).

Недостатком микроскопа-прототипа является необходимость применения дорогостоящего фемтосекундного лазера, что накладывает дополнительные требования к характеристикам лабораторного помещения (влажность, температурный режим и т.д.). При работе при низких температурах в оптическом криостате будут возникать нежелательные искажения импульсов фемтосекундного лазера на окнах криостата (чирп-эффект). Кроме того, когерентный 2D ТГц эмиттер на нелинейном кристалле DASC имеет сравнительно невысокую квантовую эффективность, а вся методика требует применения методов когерентного детектирования ТГц излучения.

Задачей настоящего технического решения является разработка терагерцового субволнового сканирующего микроскопа, который бы обеспечивал упрощение конструкции при сохранении разрешающей способности.

Поставленная задача достигается тем, что микроскоп содержит лазер, гальванометр с зеркалами для х-у сканирования, расширитель пучка, фокусирующую линзу, эмиттер терагерцового излучения, оптический криостат, спектрометр, детектор терагерцового излучения, параболические зеркала для сбора и доставки терагерцового излучения к детектору терагерцового излучения, при этом эмиттер помещен в оптический криостат и является предметным столиком для объекта. Новым в настоящем техническом решении является тот факт, что используют непрерывный лазер и некогерентный детектор терагерцового излучения, а эмиттер выполнен в виде слоя полупроводникового материала, поглощающего излучение лазера, при этом слой полупроводникового материала расположен на высоколегированной полупроводниковой подложке, прозрачной для лазерного излучения и поглощающей терагерцовое излучение.

Эмиттер может быть выполнен в виде слоя полупроводникового материала толщиной 1-2 мкм.

В качестве полупроводникового материала можно использовать прямозонный полупроводник или полупроводниковый твердый раствор.

В качестве спектрометра можно использовать интерферометр Майкельсона.

Конструкция эмиттера в виде слоя поглощающего излучение лазера полупроводникового материала, расположенного на высоколегированной полупроводниковой подложке, прозрачной для лазерного излучения и поглощающей терагерцовое излучение, позволяет использовать для генерации ТГц излучения непрерывный лазер и, соответственно, некогерентный детектор терагерцового излучения, что приводит к упрощению конструкции микроскопа. Сверхволновое разрешение достигается острой фокусировкой лазерного пучка на эмиттере ТГц излучения, а работа заявляемого технического решения основана на физическом явлении ТГц фотолюминесценции при межзонном возбуждении в полупроводниках. Явление состоит в генерации внутрицентрового ТГц излучения при рекомбинации неравновесных носителей с участием примесных центров в легированных полупроводниках при низких температурах (см. "Terahertz photoluminescence from GaAs doped with shallow donors at interband excitation", A.O. Zakharln, A.V. Andrianov, A. Yu. Egorov, N. N. Zinov'ev, Appl. Phys. Lett., 96, 211118, (2010)).

Настоящее устройство поясняется чертежами, где

на фиг. 1 схематично изображен терагерцовый субволновый сканирующий микроскоп;

на фиг. 2 схематично изображен эмиттер ТГц излучения;

на фиг. 3 приведен характерный спектр ТГц фотолюминесценции (ФЛ) слоя n-GaAs, описанного в примере 1;

на фиг. 4 приведено ТГц изображение тестового объекта, представляющего полоску слоя AI толщиной порядка 300 нм, нанесенную на двумерный ТГц эмиттер из примера 1;

на фиг. 5 показана зависимость ТГц сигнала, регистрируемого детектором в дальнем поле, от положения фокуса лазерного излучения на поверхности двумерного ТГц эмиттера из примера 1.

Настоящий терагерцовый субволновый сканирующий микроскоп (фиг. 1) содержит непрерывный лазер 1, гальванометр 2 с зеркалами для х-у сканирования, расширитель 3 пучка, фокусирующую линзу 4, эмиттер 5 терагерцового излучения, оптический криостат 6, спектрометр 7, некогерентный детектор 8 терагерцового излучения, параболические зеркала 9 для сбора и доставки терагерцового излучения к детектору 8 терагерцового излучения. Эмиттер 5 помещен в оптический криостат 6 и является предметным столиком для объекта 10.

Эмиттер 5 ТГц излучения (фиг. 2) выполнен в виде слоя 11 полупроводникового материала, поглощающего излучение лазера 1, при этом слой 11 расположен на высоколегированной полупроводниковой подложке 12, прозрачной для лазерного излучения и поглощающей терагерцовое излучение.

Эмиттер 5 может быть выполнен в виде слоя полупроводникового материала толщиной 1-2 мкм.

В качестве полупроводникового материала можно использовать прямозонный полупроводник или полупроводниковый твердый раствор.

В качестве спектрометра можно использовать интерферометр Майкельсона.

Настоящий терагерцовый субволновый сканирующий микроскоп работает следующим образом. Излучение непрерывного лазера 1 с помощью расширителя пучка 3 и фокусирующей линзы 4 остро фокусируется на эмиттере 5 ТГц излучения, с расположенным на нем объектом 10. При этом эмиттер 5 помещается в оптический криостат 6 и охлаждается до гелиевых температур. Лазерное излучение накачки полностью поглощается в эмиттере 5, и не поглощается в широкозонной полупроводниковой подложке 12, при этом генерируемое в эмиттере 5 ТГц излучение не имеет возможности распространяться внутри подложки 12 вследствие сильного поглощения на свободных носителей в ней. Кроме того, оно не может распространяться вдоль слоя эмиттера 5 в силу того, что длина волны ТГц излучения значительно больше толщины этого слоя. Поэтому оно распространяется в сторону, на которой расположен исследуемый объект 10 и область локализации ТГц излучения определяется размером фокуса возбуждающего излучения. X-Y сканирование области фотовозбуждения по поверхности эмиттера 5 осуществляется с помощью гальванометра 2 и совместно с измерением ТГц сигнала позволяет получить субволновое изображение объекта в ТГц лучах. ТГц излучение, про-генерированное в эмиттере 5, после взаимодействия с объектом 10 собирается и доставляется к детектору 8 с помощью параболических зеркал 9. В параллельном пучке ТГц излучения может быть помещен спектрометр 7, что позволяет получить спектр ТГц излучения после его взаимодействия с объектом.

Были изготовлены макетные образцы терагерцового субволнового сканирующего микроскопа.

Пример 1.

Использовался двумерный ТГц эмиттер, выполненный в виде эпитаксиаль-ной пленки n-GaAs с концентрацией донорной примеси (Si) 8×1016 см-3 толщиной 2 мкм, выращенный методом молекулярно-пучковой эпитаксии на подложке n+-GaAs с концентрацией донорной примеси 6×1018 см-3 толщиной 150 мкм. Возбуждающее излучение полупроводникового лазера с длиной волны 0.81 мкм остро фокусируется на поверхность слоя n-GaAs с его обратной стороны (см. Фиг. 2) с помощью линзы с фокусным расстоянием 60 мм (диаметр линзы 45 мм, а диаметр пучка лазерного излучения на линзе порядка 20 мм) и практически полностью поглощается в этом слое. При этом возбуждающее лазерное излучение практически не поглощается в n+-GaAs подложке, в которой край межзонного поглощения сдвинут в высокоэнергетическую область за счет эффекта Мосса-Бурштейна. Таким образом, слой n+-GaAs играет роль широкозонной (непоглощающей излучение накачки) подложки. ТГц излучение после его взаимодействия с исследуемых объектом собирается с помощью параболических зеркал и доставляется к детектору, в качестве которого используется охлаждаемый кремниевый болометр. Х-У сканирование пучка возбуждающего излучения организовано с использованием зеркала с гальванометрическим сканирующим элементом XG220-Y1.

На фиг. 3 приведен характерный спектр ТГц ФЛ слоя n-GaAs при его межзонном фотовозбуждении лазерным излучением с длиной волны 0.81 мкм при 5 К. Максимум в спектре излучения соответствует длине волны 189 мкм, а полуширина спектра излучения составляет порядка 130 мкм.

На фиг. 4 приведено ТГц изображение тестового объекта, представляющего полоску слоя AI толщиной порядка 300 нм, нанесенную на двумерный ТГц эмиттер. По данным АСМ измерений ширина перехода от алюминия к GaAs составляла порядка 400 нм.

На фиг. 5 показана зависимость ТГц сигнала, регистрируемого детектором в дальнем поле, от положения фокуса лазерного излучения на поверхности двумерного ТГц эмиттера. Выделен участок, соответствующий границе металлической пленки, то есть переходу от металла к арсениду галлия. Можно видеть, что изменение интенсивности ТГц сигнала в пределах 0.1-0.9 от максимальной интенсивности происходит в области значений горизонтальной координаты размером порядка 9 мкм. Этот размер соответствует достигнутому пространственному разрешению в ТГц изображении. Таким образом, заявляемый способ и устройство для его реализации позволяют получить субволновое разрешение в ТГц области. Принимая во внимание, что центральная длина волны в спектре ТГц фотолюминесценции (см. фиг. 3) составляет 189 мкм, приходим к заключению, что достигается субволновое разрешение порядка λ/21.

Пример 2.

Использовался двумерный ТГц эмиттер, выполненный в виде эпитаксиаль-ной пленки n-GaAs с концентрацией донорной примеси (Si) 7×1016 см-3 толщиной 2 мкм, выращенный методом молекулярно-пучковой эпитаксии на подложке p+-GaP с концентрацией акцепторной примеси 1×1018 см-3 толщиной 150 мкм. Использовался полупроводниковый лазер с длиной волны 0.81 мкм. Достигнуто пространственное разрешение 10 мкм.

Пример 3.

Использовался двумерный ТГц эмиттер, выполненный в виде эпитаксиальной пленки твердого раствора Ga0.47In0.53As с концентрацией донорной примеси (Si) 8×l016 см-3 толщиной 2 мкм, выращенный методом молекулярно-пучковой эпитаксии на подложке р+-InP с концентрацией акцепторной примеси 5×1018 см-3 толщиной 150 мкм. Использовался полупроводниковый лазер с длиной волны 1.3 мкм. Достигнуто пространственное разрешение 13 мкм.

Приведенные выше примеры доказывают тот факт, что заявляемый терагерцовый субволновый сканирующий микроскоп обеспечивает упрощение конструкции при сохранении разрешающей способности по сравнению с прототипом.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 114.
10.05.2018
№218.016.4617

Устройство для генерации второй гармоники оптического излучения

Изобретение относится к квантовой электронике, а именно к устройствам удвоения частоты оптического излучения. Устройство для генерации второй гармоники оптического излучения содержит активный элемент на основе нитрида алюминия, а также две обкладки из твердого раствора AlGaN. Активный элемент...
Тип: Изобретение
Номер охранного документа: 0002650352
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.474a

Устройство для генерации второй гармоники оптического излучения

Изобретение относится к квантовой электронике, а именно к устройствам удвоения частоты оптического излучения. Устройство для генерации второй гармоники оптического излучения содержит активный элемент на основе нитрида алюминия. Активный элемент выполнен по меньшей мере из одной пары...
Тип: Изобретение
Номер охранного документа: 0002650597
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.5995

Устройство защиты литографического оборудования от пылевых металлических частиц

Изобретение относится к устройствам защиты рабочих элементов литографического оборудования от потоков пылевых частиц, в которых запыление элементов оптики продуктами распыления мишени при ее облучении лазерным излучением является критическим. Устройство включает узел (1) зарядки пылевых...
Тип: Изобретение
Номер охранного документа: 0002655339
Дата охранного документа: 25.05.2018
08.07.2018
№218.016.6e98

Способ изготовления гетероструктуры ingaasp/inp фотопреобразователя

Способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений на подложке InP в потоке очищенного водорода при пониженном давлении при температуре эпитаксии буферного слоя InP из...
Тип: Изобретение
Номер охранного документа: 0002660415
Дата охранного документа: 06.07.2018
19.12.2018
№218.016.a8a8

Способ упрочнения поверхности вольфрамовой пластины

Изобретение относится к обработке и упрочнению поверхности вольфрамовой пластины, подвергающейся интенсивным тепловым нагрузкам, в частности, в установках термоядерного синтеза, в которых вольфрам используют в качестве материала первой стенки и пластин дивертора. Проводят воздействие на...
Тип: Изобретение
Номер охранного документа: 0002675194
Дата охранного документа: 17.12.2018
27.12.2018
№218.016.ac3c

Способ получения нанокомпозитного материала на основе алюминия

Изобретение относится к получению нанокомпозитного материала на основе алюминия. Способ включает приготовление шихты путем нанесения раствора нитрата металла-катализатора на поверхность частиц алюминия и его сушки, термического разложения нитрата металла-катализатора до оксида...
Тип: Изобретение
Номер охранного документа: 0002676117
Дата охранного документа: 26.12.2018
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.53af

Способ изготовления омических контактов фотоэлектрического преобразователя

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру AB основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку...
Тип: Изобретение
Номер охранного документа: 0002687851
Дата охранного документа: 16.05.2019
01.06.2019
№219.017.7275

Способ изготовления нитридного светоизлучающего диода

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости. На полученной...
Тип: Изобретение
Номер охранного документа: 0002690036
Дата охранного документа: 30.05.2019
07.06.2019
№219.017.7543

Концентраторно-планарный солнечный фотоэлектрический модуль

Концентраторно-планарный фотоэлектрический модуль (1) содержит фронтальную светопрозрачную панель (2) с концентрирующими оптическими элементами (4), светопрозрачную тыльную панель (5), на которой сформированы планарные неконцентраторные фотоэлектрические преобразователи (6) с окнами (10),...
Тип: Изобретение
Номер охранного документа: 0002690728
Дата охранного документа: 05.06.2019
Показаны записи 1-7 из 7.
10.01.2013
№216.012.1997

Центробежный компрессорный агрегат

Изобретение относится к области компрессоростроения, преимущественно к центробежным компрессорам с высокочастотным электроприводом без смазки в опорах ротора, в частности безмасляным вакуумным циркуляционным компрессорам газодинамических лазеров. Агрегат содержит компрессор, включающий...
Тип: Изобретение
Номер охранного документа: 0002472043
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.2154

Магнитный редуктор

Изобретение относится к области электротехники, в частности к электрическим машинам, и электромагнитным механизмам и касается особенностей выполнения бесконтактных магнитных редукторов, которые могут быть использованы в качестве передаточного устройства в механических системах с большим...
Тип: Изобретение
Номер охранного документа: 0002474033
Дата охранного документа: 27.01.2013
10.01.2014
№216.012.951b

Уплотнение с активным электромагнитным регулированием зазора

Изобретение относится к области уплотнительной техники, в частности к уплотнению роторов. Уплотнение с активным электромагнитным регулированием зазора содержит установленный на роторе диск, размещенный в корпусе кольцевой электромагнит с обмоткой и, по меньшей мере, двумя полюсами,...
Тип: Изобретение
Номер охранного документа: 0002503865
Дата охранного документа: 10.01.2014
19.12.2018
№218.016.a8fa

Модульный центробежный компрессор с осевым входом и встроенным электроприводом

Изобретение относится к компрессорной технике. Модульный центробежный компрессор с осевым входом и встроенным электроприводом содержит модуль электропривода и модуль ступени сжатия, объединенные во внешнем корпусе и имеющие единый ротор, выполненный в виде трубы, на внешней стороне которой...
Тип: Изобретение
Номер охранного документа: 0002675296
Дата охранного документа: 18.12.2018
19.04.2019
№219.017.31ed

Центробежный компрессорный агрегат

Изобретение относится к области компрессоростроения, преимущественно к герметичным осевым и центробежным компрессорам со встроенным высокооборотным электроприводом без смазки в опорах ротора. Центробежный компрессорный агрегат содержит электродвигатель, имеющий статор и ротор с валом,...
Тип: Изобретение
Номер охранного документа: 0002458253
Дата охранного документа: 10.08.2012
05.08.2020
№220.018.3c8b

Радиальная электромагнитная опора активного магнитного подшипника

Изобретение относится к подшипниковым устройствам роторных машин и может использоваться в составе различных установок с быстровращающимся ротором, таких как турбоагрегаты, центробежные компрессоры и турбодетандеры, электродвигатели и электрогенераторы и позволяет создать простую компактную...
Тип: Изобретение
Номер охранного документа: 0002728916
Дата охранного документа: 03.08.2020
12.04.2023
№223.018.46e1

Радиальная электромагнитная опора для активного магнитного подшипника

Изобретение относится к подшипниковым устройствам роторных машин и может использоваться в составе различных установок с быстровращающимся ротором, таких как турбоагрегаты, центробежные компрессоры и турбодетандеры, электродвигатели и электрогенераторы, и позволяет обеспечить минимальную...
Тип: Изобретение
Номер охранного документа: 0002763352
Дата охранного документа: 28.12.2021
+ добавить свой РИД