×
26.05.2023
223.018.7015

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ

Вид РИД

Изобретение

Аннотация: Использование: настоящее изобретение относится к области гидроакустики, а именно гидроакустических измерений, и может быть использовано для измерения величины силы цели (СЦ) подводных объектов (ПО) на их масштабных моделях. Технический результат: повышение точности результатов измерений величины силы цели подводного объекта. Сущность: калибровка приемно-излучающего тракта проводится в два этапа, а именно на первом этапе определяется амплитуда сигнала, отраженного от эталона; на втором этапе измеряется амплитуда сигнала дополнительным приемником, установленным над масштабной моделью на расстоянии, равном вертикальному размеру масштабной модели; затем с помощью регулировки усиления приемного тракта добиваются равенства амплитуд сигналов, измеренного дополнительным приемником и отраженного от эталона, далее в процессе измерения определяется величина разности измеренных амплитуд сигналов дополнительного приемника и эталона, полученных при калибровке; далее определяется текущее значение амплитуды сигнала, отраженного от эталона; далее измеряется амплитуда сигнала, отраженная от масштабной модели; далее определяется эквивалентный радиус; далее определяется величина силы цели по формуле . 3 ил.

Настоящее изобретение относится к области гидроакустики, а именно гидроакустических измерений и может быть использовано для измерения величины силы цели (СЦ) подводных объектов (ПО) на их масштабных моделях.

Величина гидролокационного отражения от подводного объекта оценивается силой цели, определяемой как отношение амплитуды сигнала, отраженного от подводного объекта к амплитуде сигнала, отраженного от эталона. Также в отечественной технической литературе часто используется величина эквивалентного радиуса Rэкв, определяемая величиной отношения амплитуды сигнала, отраженного от подводных объектов - Ам, к величине амплитуды сигнала, отраженного от сферы радиусом

Известен способ измерения величины силы цели масштабной модели подводного объекта, описанный в монографии (В.П. Пересада «Радиолокационная видимость морских объектов» Государственное союзное издательство судостроительной промышленности, Ленинград, 1961, стр. 98). В данном способе измерение силы цели подводных объектов выполняется путем сравнения амплитуд сигналов, отраженных от масштабной модели подводного объекта - Ам и эталона - Аэт. В качестве эталона чаще всего выбирается металлическая сфера. Измерение амплитуды отраженного сигнала от эталона выполняется на этапе калибровки аппаратуры перед началом и после окончания каждой серии опытов.

Недостатком известного способа является необходимость проведения измерений эталона до и после измерений и, как следствие снижение точности получаемых результатов в связи с изменениями гидрологических условий в процессе измерений.

В качестве ближайшего прототипа принят способ измерения величины силы цели подводного объекта, описанный в книге (Г.В. Абрамов «Основы гидроакустического моделирования». Издательство Саратовского университета, 1976, стр. 13). Согласно этому способу, для определения силы цели масштабной модели подводного объекта перед началом и по окончании каждой серии измерений выполняется калибровка приемоизлучающего тракта с помощью амплитуды сигнала, отраженного от эталона - Аэт. Для этого модель снимается со штанги, и на его место устанавливается эталонный отражатель. Выполняются измерения амплитуды сигнала Аэт, отраженного от эталона. С помощью сравнения полученных в результате измерений амплитуд сигналов, отраженных от модели подводного объекта - Ам и эталона - Аэт, рассчитывается величина силы цели.

В известном способе измерения эталонного сигнала выполняются с длительным интервалом времени между началом и окончанием серии опытов, включающих измерения амплитуд отраженных сигналов от подводного объекта при различных длительностях зондирующих сигналов, различного вида зондирующих сигналов (тональный, сложный), а также при мультистатическом и бистатическом режимах излучения и приема.

Недостатком прототипа является то, что за время между двумя последовательными сериями измерений продолжительностью 5-6 часов амплитуды сигналов, отраженных от эталона, принятые приемником в результате калибровки перед началом и после окончания серии измерений отличаются на 3-4 дБ. Причиной изменения амплитуд эталонных сигналов между двумя смежными сериями измерений являются изменения скорости звука по глубине в районе выполнения измерений и как следствие изменение амплитуд сигналов, отраженных от измеряемого подводного объекта (В.Б. Жуков «Современные технологии в области гидроакустических антенн». Сборник «Актуальные проблемы пьезоэлектрического приборостроения и нанотехнологий» - труды НКТБ «Пьезоприбор» Ростовский государственный университет, 2016). Такое существенное изменение амплитуд сигналов при измерениях величины силы цели подводного объекта на его масштабной модели существенно снижает точность результатов измерений.

Техническим результатом изобретения является повышение точности результатов измерений величины силы цели подводного объекта.

Технический результат достигается за счет того, что в способе определения силы цели подводных объектов на их масштабных моделях, состоящий в облучении эталона и масштабной модели зондирующим сигналом, приеме отраженных амплитуд сигналов от эталона и масштабной модели и определения силы цели, имеет следующие отличия: калибровка приемно-излучающего тракта проводится в два этапа, а именно на первом этапе определяется амплитуда сигнала Аэт отраженного от эталона; на втором этапе, измеряется амплитуда сигнала Апр дополнительным приемником установленным над масштабной моделью на расстоянии равному вертикальному размеру масштабной модели; затем, с помощью регулировки усиления приемного тракта добиваются равенства амплитуд сигнала измеренного дополнительным приемником Апр и отраженного от эталона Аэт, далее в процессе измерения определяется величина разности измеренных амплитуд сигналов ΔАэт дополнительного приемника и эталона, полученных при калибровке по формуле:

далее определяется текущее значение амплитуды сигнала, отраженного от эталона по формуле:

далее определяется эквивалентный радиус по формуле: далее определяется величина силы цели по формуле:

где:

ΔΑэт - величина разности измеренных амплитуд сигналов дополнительного приемника и отраженных от эталона;

Аэт - амплитуда сигнала, отраженного от эталона;

Апр - амплитуда сигнала, измеренная дополнительным приемником;

Rэкв - эквивалентный радиус;

Ам - амплитуда сигнала, отраженного от масштабной модели подводного объекта;

Аэ - текущее значение амплитуды сигнала, отраженного от эталона;

СЦ - сила цели.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена схема измерения амплитуды сигнала, отраженного от эталона; на фиг. 2 представлена схема измерения силы цели масштабной модели; на фиг. 3 представлен график изменения скорости звука по глубине с временным интервалом 6 часов между последовательными измерениями,

где:

1 - плавлаборатория;

2 - электронный блок;

3 - приемник акустического сигнала;

4 - излучатель акустического сигнала;

5 - подъемно - поворотное устройство;

6 - эталон;

7 - масштабная модель подводного объекта;

8 - дополнительный приемник, установленный над моделью;

9 - временной интервал утро;

10 - временной интервал вечер.

Устройство для определения величины силы цели включает в себя плавлабораторию 1, содержащую электронный блок 2, соединенный с приемником 3 и излучателем 4 (фиг. 1), приемник 3 и излучатель 4, установленные на заданную глубину, а также подъемно-поворотное устройство 5 для установки эталона 6 и масштабной модели 7 с установленным над ней дополнительным приемником 8 и соединенным с электронным блоком 2. (см. фиг. 2). Приемник 3, излучатель 4, эталон 6, и масштабная модель 7 устанавливаются на одинаковую глубину.

Первоначально в предложенном способе определения величины силы цели масштабной модели подводного объекта проводится калибровка приемно-излучающего тракта (на чертеже не показан) электронного блока 2 в два этапа:

На первом этапе с помощью подъемно-поворотного устройства 5 устанавливается эталон 6. Приемником акустического сигнала 3 измеряется амплитуда сигнала, излученного излучателем 4 и отраженного от эталона 6 - Аэт. Полученная амплитуда сигнала Аэт отраженного от эталона 6 подается на вход электронного блока 2, установленного на плавлаборатории 1.

После этого эталон 6 с помощью подъемно-поворотного устройства 5 убирается.

На втором этапе с помощью подъемно-поворотного устройства 5 устанавливается на ту же глубину, что и эталон 6, масштабная модель 7, над которой на расстоянии hпр, равному вертикальному размеру модели 4 hм установлен дополнительный приемник 8. Далее, дополнительным приемником 8 измеряется амплитуда сигнала Апр, излученного излучателем 4.

Измеренная амплитуда сигнала Апр с приемника 8 подается на вход электронного блока 2, установленного на плавлаборатории 1, и сравнивается с амплитудой сигнала, отраженного от эталона 6 Аэт.

С помощью регулировки усиления приемного тракта (на фиг. не показано) электронного блока 2 добиваются равенства амплитуд сигнала, принимаемого дополнительным приемником 8 и сигнала, отраженного от эталона 6 и принятого приемником 3 Аэтпр на первом этапе калибровки.

Далее, в процессе измерений, приемником 3 измеряется амплитуда сигнала Ам, излученного излучателем 4 и отраженного от масштабной модели 7, одновременно, дополнительным приемником 8 измеряется амплитуда сигнала, излученного излучателем 4 - Апр. При изменении амплитуды сигнала Апр определяется разность текущего значения амплитуды сигнала Апр и амплитуды сигнала Аэт.

где:

Аэт - амплитуда сигнала, отраженного от эталона;

Апр - амплитуда сигнала, измеренного дополнительным приемником.

В связи с тем, что дополнительный приемник 8 измеряет амплитуду сигнала Апр, прошедшего дистанцию от излучателя 4 до дополнительного приемника 8, а приемник 3 измеряет амплитуду сигнала Аэт, прошедшего расстояние от излучателя 4 до эталона 6 и назад, то величина разности ΔАэт увеличивается в 2 раза и формируется текущее значение сигнала эталона.

где:

Аэ - текущее значение амплитуды сигнала, отраженного от эталона;

Данная амплитуда сигнала эталона Аэ используется при определении величины силы цели. При изменении акустико-гидрологических условий измерения, они будут автоматически учитываться величиной Аэ.

Эквивалентный радиус Rэкв определяется по формуле

где:

Ам - амплитуда сигнала, отраженного от масштабной модели подводного объекта;

Аэ - текущее значение амплитуды сигнала, отраженного от эталона;

СЦ - сила цели.

Величина силы цели определяется по формуле

где:

СЦ - сила цели.

При выполнении измерений не требуется знание чувствительностей приемников 3 и 8. Чувствительность приемника 8 калибруется в процессе приравнивания амплитуд сигналов Апр и сигнала, отраженного от эталона Аэт. Выравнивание чувствительности достигается тем, что сигнал, отраженный от эталона 6 и модели 7 принимаются одним приемником 3.

Как видно из фиг. 3, распределение скорости звука по глубине с временным интервалом 8 часов (утро-вечер) существенно изменилась. В результате рефракции (поворота) лучей, амплитуда сигнала, облучающего модель и эталонную сферу, изменяются на величину ΔА. Если измерения амплитуд сигналов от сферы Аэт и модели Ам выполнять одновременно, то изменения амплитуды сигнала облучения не приведет к погрешности определения величины силы цели. В случае выполнения измерений величины Аэт и Ам в разное время будет иметь место погрешность расчета величины силы цели, т.к. измерения величин амплитуд сигнала, отраженного от эталона Аэт и сигнала, отраженного от масштабной модели подводного объекта Ам выполняется в различное время.

Таким образом, за счет того что калибровка приемно-излучающего тракта проводится в два этапа и на втором этапе устанавливается над масштабной моделью дополнительный приемник; а также за счет учета изменения уровня амплитуды, падающего на масштабную модель сигнала на протяжении всего эксперимента, достигается увеличение точности измерения величины силы цели, обусловленной изменением гидрологических условий в процессе измерения.


СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
Источник поступления информации: Роспатент

Показаны записи 351-360 из 364.
02.04.2020
№220.018.1301

Устройство вибродемпфирования виброизолированного от корпуса судна валопровода

Изобретение относится к области судостроения, а именно к судовым двигательно-движительным установкам с уменьшенными уровнями вибрации и излучаемого шума, в которых валопровод с подшипниками смонтирован внутри рамы валопровода, виброизолированной от корпуса судна. Устройство вибродемпфирования...
Тип: Изобретение
Номер охранного документа: 0002718182
Дата охранного документа: 31.03.2020
15.05.2020
№220.018.1cf5

Способ передачи информации в многоканальной системе гидроакустической связи

Изобретение относится к технике связи и может использоваться в системе гидроакустической связи. Технический результат состоит в повышении скорости передачи сигналов связи. Для этого массив из N=2-1 циклических сдвигов М-последовательности разделяется на подмассивы. Подлежащее передаче...
Тип: Изобретение
Номер охранного документа: 0002720888
Дата охранного документа: 13.05.2020
21.05.2020
№220.018.1f0a

Автоматизированный комплекс контроля качества сварных соединений

Использование: для контроля качества сварных соединений. Сущность изобретения заключается в том, что автоматизированный комплекс контроля качества сварных соединений содержит прижимы для его крепления на контролируемом изделии, искательную головку, механизм перемещения искательной головки,...
Тип: Изобретение
Номер охранного документа: 0002721480
Дата охранного документа: 19.05.2020
21.05.2020
№220.018.1f28

Автоматизированный контроль температур при сварке

Изобретение относится к сварочному производству и может быть использовано в устройствах контроля основных параметров сварки в качестве средства автоматизированного контроля температур. Техническим результатом является расширение информативных возможностей системы автоматизированного контроля...
Тип: Изобретение
Номер охранного документа: 0002721478
Дата охранного документа: 19.05.2020
12.06.2020
№220.018.25e7

Устройство для смесеобразования в двигателях внутреннего сгорания

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания. Изобретение направлено на обеспечение повышения коэффициента полезного действия, экономичности и снижения токсичности двигателя внутреннего сгорания за счет организации управляемости процессов...
Тип: Изобретение
Номер охранного документа: 0002723260
Дата охранного документа: 09.06.2020
18.07.2020
№220.018.33ad

Стекло, упрочняемое ионным обменом

Изобретение относится к составам стекол, упрочняемых ионным обменом, предназначенных для изготовления изделий, обладающих высокими прочностными и оптическими характеристиками. Такие изделия применяются в качестве остекления авиационного, автомобильного, железнодорожного, водного и других видов...
Тип: Изобретение
Номер охранного документа: 0002726812
Дата охранного документа: 15.07.2020
26.07.2020
№220.018.3877

Судовой винтовой движитель

Изобретение относится к области судостроения и касается вопроса создания судовых гребных движителей с низким уровнем гидродинамического шума. Судовой винтовой движитель содержит ступицу и лопасти с входными и выходными участками. Поверхности выходных участков лопастей имеют волнообразную форму....
Тип: Изобретение
Номер охранного документа: 0002727788
Дата охранного документа: 23.07.2020
05.08.2020
№220.018.3ca8

Способ изготовления корундовой керамики

Изобретение относится к получению материалов для электронной техники, таких как детали СВЧ-техники, в частности сложнопрофильные керамические каркасы для микрочипов. Способ изготовления корундовой керамики включает мокрый помол глинозема, введение минерализующих добавок, получение спека, его...
Тип: Изобретение
Номер охранного документа: 0002728911
Дата охранного документа: 03.08.2020
11.05.2023
№223.018.53c5

Универсальная система обмена данными

Изобретение относится к области цифровой передачи информации. Техническим результатом является повышение отказоустойчивости системы обмена данными. Система обмена данными включает по меньшей мере четыре блока динамической маршрутизации, соединенные волоконно-оптическими линиями связи, в которой...
Тип: Изобретение
Номер охранного документа: 0002795451
Дата охранного документа: 03.05.2023
11.05.2023
№223.018.5423

Способ стендовой калибровки трехканального блока акселерометров

Изобретение относится к области гироскопической техники. Технический результат - повышение точности определения паспортных параметров блока акселерометров (БА). В способе стендовой калибровки трехканального блока акселерометров, блок акселерометров, предназначенный для использования в морских...
Тип: Изобретение
Номер охранного документа: 0002795393
Дата охранного документа: 03.05.2023
Показаны записи 1-6 из 6.
20.02.2014
№216.012.a224

Композиционный полимерный материал для палубных и напольных покрытий

Изобретение относится к высокопрочным композиционным полимерным материалам для палубных и напольных покрытий. Композиционный полимерный материал, представляющий собой резиновую смесь, перерабатываемую по формовой технологии, включающую полимерную матрицу, вулканизующую систему, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002507223
Дата охранного документа: 20.02.2014
13.01.2017
№217.015.8f98

Конструкционная панель

Изобретение относится к новой конструкционной панели, используемой в качестве покрытий, шумовиброизоляционной, теплоизоляционной панели. Панель выполнена из композиции, содержащей эпоксидную смолу на основе блок-олигомера с длинной цепью, содержащего в своем составе ароматические звенья,...
Тип: Изобретение
Номер охранного документа: 0002605572
Дата охранного документа: 20.12.2016
09.06.2019
№219.017.7c76

Гидроакустический резонатор

Изобретение относится к области гидроакустики и может быть использовано в опытовых бассейнах для создания звукопоглощающих и звукоизолирующих элементов. Гидроакустический резонатор включает инерционный элемент в виде заключенного в отрезок трубы из жесткого материала столба жидкости и связанный...
Тип: Изобретение
Номер охранного документа: 0002321785
Дата охранного документа: 10.04.2008
04.07.2020
№220.018.2f1b

Виброизолирующая опора гребного вала

Изобретение относится к судостроению, а именно к опорам судовых гребных валов. Опора гребного вала включает в себя как минимум один опорный подшипник, установленный во втулке, удерживаемой по меньшей мере двумя упругими тягами, имеющими форму сегмента кольца и закрепленными в корпусе опоры....
Тип: Изобретение
Номер охранного документа: 0002725360
Дата охранного документа: 02.07.2020
15.05.2023
№223.018.5bc5

Звуко-виброизолирующий элемент для покрытий

Изобретение относится к области машиностроения и судостроения. Звуко-виброизолирующий элемент состоит из упругого элемента с полостью, в которую установлена катушка с армирующими элементами. Катушка состоит из набора армирующих элементов двух конструкций, соединенных между собой эластомерной...
Тип: Изобретение
Номер охранного документа: 0002752739
Дата охранного документа: 30.07.2021
15.05.2023
№223.018.5bc6

Звуко-виброизолирующий элемент для покрытий

Изобретение относится к области машиностроения и судостроения. Звуко-виброизолирующий элемент состоит из упругого элемента с полостью, в которую установлена катушка с армирующими элементами. Катушка состоит из набора армирующих элементов двух конструкций, соединенных между собой эластомерной...
Тип: Изобретение
Номер охранного документа: 0002752739
Дата охранного документа: 30.07.2021
+ добавить свой РИД