×
26.05.2023
223.018.7015

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ

Вид РИД

Изобретение

Аннотация: Использование: настоящее изобретение относится к области гидроакустики, а именно гидроакустических измерений, и может быть использовано для измерения величины силы цели (СЦ) подводных объектов (ПО) на их масштабных моделях. Технический результат: повышение точности результатов измерений величины силы цели подводного объекта. Сущность: калибровка приемно-излучающего тракта проводится в два этапа, а именно на первом этапе определяется амплитуда сигнала, отраженного от эталона; на втором этапе измеряется амплитуда сигнала дополнительным приемником, установленным над масштабной моделью на расстоянии, равном вертикальному размеру масштабной модели; затем с помощью регулировки усиления приемного тракта добиваются равенства амплитуд сигналов, измеренного дополнительным приемником и отраженного от эталона, далее в процессе измерения определяется величина разности измеренных амплитуд сигналов дополнительного приемника и эталона, полученных при калибровке; далее определяется текущее значение амплитуды сигнала, отраженного от эталона; далее измеряется амплитуда сигнала, отраженная от масштабной модели; далее определяется эквивалентный радиус; далее определяется величина силы цели по формуле . 3 ил.

Настоящее изобретение относится к области гидроакустики, а именно гидроакустических измерений и может быть использовано для измерения величины силы цели (СЦ) подводных объектов (ПО) на их масштабных моделях.

Величина гидролокационного отражения от подводного объекта оценивается силой цели, определяемой как отношение амплитуды сигнала, отраженного от подводного объекта к амплитуде сигнала, отраженного от эталона. Также в отечественной технической литературе часто используется величина эквивалентного радиуса Rэкв, определяемая величиной отношения амплитуды сигнала, отраженного от подводных объектов - Ам, к величине амплитуды сигнала, отраженного от сферы радиусом

Известен способ измерения величины силы цели масштабной модели подводного объекта, описанный в монографии (В.П. Пересада «Радиолокационная видимость морских объектов» Государственное союзное издательство судостроительной промышленности, Ленинград, 1961, стр. 98). В данном способе измерение силы цели подводных объектов выполняется путем сравнения амплитуд сигналов, отраженных от масштабной модели подводного объекта - Ам и эталона - Аэт. В качестве эталона чаще всего выбирается металлическая сфера. Измерение амплитуды отраженного сигнала от эталона выполняется на этапе калибровки аппаратуры перед началом и после окончания каждой серии опытов.

Недостатком известного способа является необходимость проведения измерений эталона до и после измерений и, как следствие снижение точности получаемых результатов в связи с изменениями гидрологических условий в процессе измерений.

В качестве ближайшего прототипа принят способ измерения величины силы цели подводного объекта, описанный в книге (Г.В. Абрамов «Основы гидроакустического моделирования». Издательство Саратовского университета, 1976, стр. 13). Согласно этому способу, для определения силы цели масштабной модели подводного объекта перед началом и по окончании каждой серии измерений выполняется калибровка приемоизлучающего тракта с помощью амплитуды сигнала, отраженного от эталона - Аэт. Для этого модель снимается со штанги, и на его место устанавливается эталонный отражатель. Выполняются измерения амплитуды сигнала Аэт, отраженного от эталона. С помощью сравнения полученных в результате измерений амплитуд сигналов, отраженных от модели подводного объекта - Ам и эталона - Аэт, рассчитывается величина силы цели.

В известном способе измерения эталонного сигнала выполняются с длительным интервалом времени между началом и окончанием серии опытов, включающих измерения амплитуд отраженных сигналов от подводного объекта при различных длительностях зондирующих сигналов, различного вида зондирующих сигналов (тональный, сложный), а также при мультистатическом и бистатическом режимах излучения и приема.

Недостатком прототипа является то, что за время между двумя последовательными сериями измерений продолжительностью 5-6 часов амплитуды сигналов, отраженных от эталона, принятые приемником в результате калибровки перед началом и после окончания серии измерений отличаются на 3-4 дБ. Причиной изменения амплитуд эталонных сигналов между двумя смежными сериями измерений являются изменения скорости звука по глубине в районе выполнения измерений и как следствие изменение амплитуд сигналов, отраженных от измеряемого подводного объекта (В.Б. Жуков «Современные технологии в области гидроакустических антенн». Сборник «Актуальные проблемы пьезоэлектрического приборостроения и нанотехнологий» - труды НКТБ «Пьезоприбор» Ростовский государственный университет, 2016). Такое существенное изменение амплитуд сигналов при измерениях величины силы цели подводного объекта на его масштабной модели существенно снижает точность результатов измерений.

Техническим результатом изобретения является повышение точности результатов измерений величины силы цели подводного объекта.

Технический результат достигается за счет того, что в способе определения силы цели подводных объектов на их масштабных моделях, состоящий в облучении эталона и масштабной модели зондирующим сигналом, приеме отраженных амплитуд сигналов от эталона и масштабной модели и определения силы цели, имеет следующие отличия: калибровка приемно-излучающего тракта проводится в два этапа, а именно на первом этапе определяется амплитуда сигнала Аэт отраженного от эталона; на втором этапе, измеряется амплитуда сигнала Апр дополнительным приемником установленным над масштабной моделью на расстоянии равному вертикальному размеру масштабной модели; затем, с помощью регулировки усиления приемного тракта добиваются равенства амплитуд сигнала измеренного дополнительным приемником Апр и отраженного от эталона Аэт, далее в процессе измерения определяется величина разности измеренных амплитуд сигналов ΔАэт дополнительного приемника и эталона, полученных при калибровке по формуле:

далее определяется текущее значение амплитуды сигнала, отраженного от эталона по формуле:

далее определяется эквивалентный радиус по формуле: далее определяется величина силы цели по формуле:

где:

ΔΑэт - величина разности измеренных амплитуд сигналов дополнительного приемника и отраженных от эталона;

Аэт - амплитуда сигнала, отраженного от эталона;

Апр - амплитуда сигнала, измеренная дополнительным приемником;

Rэкв - эквивалентный радиус;

Ам - амплитуда сигнала, отраженного от масштабной модели подводного объекта;

Аэ - текущее значение амплитуды сигнала, отраженного от эталона;

СЦ - сила цели.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена схема измерения амплитуды сигнала, отраженного от эталона; на фиг. 2 представлена схема измерения силы цели масштабной модели; на фиг. 3 представлен график изменения скорости звука по глубине с временным интервалом 6 часов между последовательными измерениями,

где:

1 - плавлаборатория;

2 - электронный блок;

3 - приемник акустического сигнала;

4 - излучатель акустического сигнала;

5 - подъемно - поворотное устройство;

6 - эталон;

7 - масштабная модель подводного объекта;

8 - дополнительный приемник, установленный над моделью;

9 - временной интервал утро;

10 - временной интервал вечер.

Устройство для определения величины силы цели включает в себя плавлабораторию 1, содержащую электронный блок 2, соединенный с приемником 3 и излучателем 4 (фиг. 1), приемник 3 и излучатель 4, установленные на заданную глубину, а также подъемно-поворотное устройство 5 для установки эталона 6 и масштабной модели 7 с установленным над ней дополнительным приемником 8 и соединенным с электронным блоком 2. (см. фиг. 2). Приемник 3, излучатель 4, эталон 6, и масштабная модель 7 устанавливаются на одинаковую глубину.

Первоначально в предложенном способе определения величины силы цели масштабной модели подводного объекта проводится калибровка приемно-излучающего тракта (на чертеже не показан) электронного блока 2 в два этапа:

На первом этапе с помощью подъемно-поворотного устройства 5 устанавливается эталон 6. Приемником акустического сигнала 3 измеряется амплитуда сигнала, излученного излучателем 4 и отраженного от эталона 6 - Аэт. Полученная амплитуда сигнала Аэт отраженного от эталона 6 подается на вход электронного блока 2, установленного на плавлаборатории 1.

После этого эталон 6 с помощью подъемно-поворотного устройства 5 убирается.

На втором этапе с помощью подъемно-поворотного устройства 5 устанавливается на ту же глубину, что и эталон 6, масштабная модель 7, над которой на расстоянии hпр, равному вертикальному размеру модели 4 hм установлен дополнительный приемник 8. Далее, дополнительным приемником 8 измеряется амплитуда сигнала Апр, излученного излучателем 4.

Измеренная амплитуда сигнала Апр с приемника 8 подается на вход электронного блока 2, установленного на плавлаборатории 1, и сравнивается с амплитудой сигнала, отраженного от эталона 6 Аэт.

С помощью регулировки усиления приемного тракта (на фиг. не показано) электронного блока 2 добиваются равенства амплитуд сигнала, принимаемого дополнительным приемником 8 и сигнала, отраженного от эталона 6 и принятого приемником 3 Аэтпр на первом этапе калибровки.

Далее, в процессе измерений, приемником 3 измеряется амплитуда сигнала Ам, излученного излучателем 4 и отраженного от масштабной модели 7, одновременно, дополнительным приемником 8 измеряется амплитуда сигнала, излученного излучателем 4 - Апр. При изменении амплитуды сигнала Апр определяется разность текущего значения амплитуды сигнала Апр и амплитуды сигнала Аэт.

где:

Аэт - амплитуда сигнала, отраженного от эталона;

Апр - амплитуда сигнала, измеренного дополнительным приемником.

В связи с тем, что дополнительный приемник 8 измеряет амплитуду сигнала Апр, прошедшего дистанцию от излучателя 4 до дополнительного приемника 8, а приемник 3 измеряет амплитуду сигнала Аэт, прошедшего расстояние от излучателя 4 до эталона 6 и назад, то величина разности ΔАэт увеличивается в 2 раза и формируется текущее значение сигнала эталона.

где:

Аэ - текущее значение амплитуды сигнала, отраженного от эталона;

Данная амплитуда сигнала эталона Аэ используется при определении величины силы цели. При изменении акустико-гидрологических условий измерения, они будут автоматически учитываться величиной Аэ.

Эквивалентный радиус Rэкв определяется по формуле

где:

Ам - амплитуда сигнала, отраженного от масштабной модели подводного объекта;

Аэ - текущее значение амплитуды сигнала, отраженного от эталона;

СЦ - сила цели.

Величина силы цели определяется по формуле

где:

СЦ - сила цели.

При выполнении измерений не требуется знание чувствительностей приемников 3 и 8. Чувствительность приемника 8 калибруется в процессе приравнивания амплитуд сигналов Апр и сигнала, отраженного от эталона Аэт. Выравнивание чувствительности достигается тем, что сигнал, отраженный от эталона 6 и модели 7 принимаются одним приемником 3.

Как видно из фиг. 3, распределение скорости звука по глубине с временным интервалом 8 часов (утро-вечер) существенно изменилась. В результате рефракции (поворота) лучей, амплитуда сигнала, облучающего модель и эталонную сферу, изменяются на величину ΔА. Если измерения амплитуд сигналов от сферы Аэт и модели Ам выполнять одновременно, то изменения амплитуды сигнала облучения не приведет к погрешности определения величины силы цели. В случае выполнения измерений величины Аэт и Ам в разное время будет иметь место погрешность расчета величины силы цели, т.к. измерения величин амплитуд сигнала, отраженного от эталона Аэт и сигнала, отраженного от масштабной модели подводного объекта Ам выполняется в различное время.

Таким образом, за счет того что калибровка приемно-излучающего тракта проводится в два этапа и на втором этапе устанавливается над масштабной моделью дополнительный приемник; а также за счет учета изменения уровня амплитуды, падающего на масштабную модель сигнала на протяжении всего эксперимента, достигается увеличение точности измерения величины силы цели, обусловленной изменением гидрологических условий в процессе измерения.


СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ЦЕЛИ НА МАСШТАБНОЙ МОДЕЛИ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 364.
27.05.2016
№216.015.4289

Способ изготовления промежуточных опорных фундаментных конструкций из полимерных композиционных материалов

Изобретение относится к области судостроения и может использоваться в конструкции судовых фундаментов и фундаментных рамах. Для изготовления промежуточных опорных фундаментных конструкций из полимерных композиционных материалов составляют балки коробчатого профиля из вибропоглощающего...
Тип: Изобретение
Номер охранного документа: 0002585205
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4362

Водометный двигательно-движительный комплекс

Изобретение относится к области судостроения, а именно к водометным движителям. Водометный двигательно-движительный комплекс включает осесимметричный корпус в виде судовой кольцевой насадки, в котором размещены статор электродвигателя и подвижно установленное круговое кольцо. На внутренней...
Тип: Изобретение
Номер охранного документа: 0002585207
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4428

Ледокольное судно

Изобретение относится к области судостроения и касается вопроса создания ледокольных судов, предназначенных для прокладки широкого канала, обеспечивающего безопасную проводку крупнотоннажных судов во льдах. Предложено ледокольное судно, включающее корпус, состоящий из основного головного...
Тип: Изобретение
Номер охранного документа: 0002585393
Дата охранного документа: 27.05.2016
20.08.2016
№216.015.4b1e

Соединение труб

Изобретение относится к соединениям трубопроводной арматуры. Соединение труб содержит законцовки труб, каждая из которых снабжена парой выступов для фиксации кольцевого уплотняющего элемента, вставленного между выступами, корпус с выступом на внутренней поверхности с одной стороны и резьбой на...
Тип: Изобретение
Номер охранного документа: 0002594847
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4c96

Система турбонаддува тепловозного двс с двумя степенями регулируемого наддува

Изобретение может быть использовано в двигателях внутреннего сгорания. Система турбонаддува тепловозного двигателя внутреннего сгорания, содержит турбокомпрессор (1), подключенный через воздухонапорную магистраль (2) и охладитель (3) наддувочного воздуха к впускному ресиверу (4) двигателя (5)....
Тип: Изобретение
Номер охранного документа: 0002594836
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4d6e

Способ настройки положения резца токарного станка

Изобретение относится к области металлообработки и может быть использовано при автоматизированной механической обработке изделий со сложным пространственным профилем и высокими требованиями по качеству и точности обрабатываемой поверхности, формируемой посредством обработки точением на токарных...
Тип: Изобретение
Номер охранного документа: 0002595197
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f03

Устройство для изготовления цилиндрических заготовок формы стакан

Изобретение относится к области прокатки заготовок сплошного сечения с прошивкой глухого отверстия посредством центральной оправки. Устройство включает установленные в технологической последовательности устройства: бункер, транспортер, печь индукционного нагрева, трехвалковый прокатный стан,...
Тип: Изобретение
Номер охранного документа: 0002595182
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.5513

Способ изготовления полой металлической панели, предназначенной для соединения ее с корпусом судна

Изобретение может быть использовано при изготовлении трехслойных металлических полых панелей для соединения их с корпусом судна при создании, например, переборок, выгородок, палуб, стенок рубок и надстроек судов. Полая металлическая панель состоит из наружных обшивок и размещенных между ними...
Тип: Изобретение
Номер охранного документа: 0002593250
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5ace

Устройство определения параметров поля температуры в объеме водной среды, возмущенной движением корпуса судна или модели

Изобретение относится к области измерительной техники и может быть использовано для исследования взаимодействия судна или его модели с водной средой, стратифицированной по глубине слоями разной температуры. Заявлено устройство определения параметров поля температуры в объеме водной среды,...
Тип: Изобретение
Номер охранного документа: 0002589515
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5b60

Способ изготовления обтекателя гидроакустической станции методом намотки

Использование: изобретение относится к области судостроения, а именно к способам изготовления обтекателей антенн гидроакустических станций, и касается вопросов их конструирования. Сущность: изготовление обтекателя гидроакустической станции по частям с последующим их соединением, при этом...
Тип: Изобретение
Номер охранного документа: 0002589504
Дата охранного документа: 10.07.2016
Показаны записи 1-6 из 6.
20.02.2014
№216.012.a224

Композиционный полимерный материал для палубных и напольных покрытий

Изобретение относится к высокопрочным композиционным полимерным материалам для палубных и напольных покрытий. Композиционный полимерный материал, представляющий собой резиновую смесь, перерабатываемую по формовой технологии, включающую полимерную матрицу, вулканизующую систему, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002507223
Дата охранного документа: 20.02.2014
13.01.2017
№217.015.8f98

Конструкционная панель

Изобретение относится к новой конструкционной панели, используемой в качестве покрытий, шумовиброизоляционной, теплоизоляционной панели. Панель выполнена из композиции, содержащей эпоксидную смолу на основе блок-олигомера с длинной цепью, содержащего в своем составе ароматические звенья,...
Тип: Изобретение
Номер охранного документа: 0002605572
Дата охранного документа: 20.12.2016
09.06.2019
№219.017.7c76

Гидроакустический резонатор

Изобретение относится к области гидроакустики и может быть использовано в опытовых бассейнах для создания звукопоглощающих и звукоизолирующих элементов. Гидроакустический резонатор включает инерционный элемент в виде заключенного в отрезок трубы из жесткого материала столба жидкости и связанный...
Тип: Изобретение
Номер охранного документа: 0002321785
Дата охранного документа: 10.04.2008
04.07.2020
№220.018.2f1b

Виброизолирующая опора гребного вала

Изобретение относится к судостроению, а именно к опорам судовых гребных валов. Опора гребного вала включает в себя как минимум один опорный подшипник, установленный во втулке, удерживаемой по меньшей мере двумя упругими тягами, имеющими форму сегмента кольца и закрепленными в корпусе опоры....
Тип: Изобретение
Номер охранного документа: 0002725360
Дата охранного документа: 02.07.2020
15.05.2023
№223.018.5bc5

Звуко-виброизолирующий элемент для покрытий

Изобретение относится к области машиностроения и судостроения. Звуко-виброизолирующий элемент состоит из упругого элемента с полостью, в которую установлена катушка с армирующими элементами. Катушка состоит из набора армирующих элементов двух конструкций, соединенных между собой эластомерной...
Тип: Изобретение
Номер охранного документа: 0002752739
Дата охранного документа: 30.07.2021
15.05.2023
№223.018.5bc6

Звуко-виброизолирующий элемент для покрытий

Изобретение относится к области машиностроения и судостроения. Звуко-виброизолирующий элемент состоит из упругого элемента с полостью, в которую установлена катушка с армирующими элементами. Катушка состоит из набора армирующих элементов двух конструкций, соединенных между собой эластомерной...
Тип: Изобретение
Номер охранного документа: 0002752739
Дата охранного документа: 30.07.2021
+ добавить свой РИД