×
23.05.2023
223.018.6ed7

Результат интеллектуальной деятельности: Способ диспергирования трудновоспламеняемых наночастиц

Вид РИД

Изобретение

№ охранного документа
0002744462
Дата охранного документа
09.03.2021
Аннотация: Изобретение относится к тепловым двигателям, в которых для производства механической работы используется теплота сгорания твердого топлива из трудновоспламеняемых наночастиц. Способ диспергирования трудновоспламеняемых наночастиц, состоящих из ядра и оболочки, заключается в том, что осуществляют смешение наночастиц с воздухом для транспортировки в камеру сгорания, в которой запускают процесс диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус вторичных кластеров не должен превышать 25 нм и определяется из заданного соотношения. Для запуска процесса диспергации наночастиц в камере сгорания их экспонируют рентгеновским излучением с определенными интенсивностью и длиной волны, при этом радиус наночастицы и толщина ее оболочки ограничены определенными соотношениями. Далее происходит самопроизвольная атомизация вторичных кластеров. Изобретение обеспечивает повышение энергетических характеристик и надежности работы двигателя.

Изобретение относится к тепловым двигателям, в которых для производства механической работы используется теплота сгорания твердого топлива, в частности топлива из трудновоспламеняемых наночастиц.

Известен способ организации рабочего процесса в двигателе (RU 2633730, 2017), характеризующийся тем, что порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе предварительно нагружают давлением вытеснения, нагревают и подают в камеру сгорания через форсунку. Недостатком способа является необходимость предварительной подготовки суспензии на основе сжиженных газов и порошков металлов и ограничения по времени хранения топлива.

Наиболее близким аналогом заявленного изобретения является способ диспергирования трудновоспламеняемых наночастиц бора (RU 2701249, 2019), состоящих из ядра и оболочки, характеризующийся тем, что осуществляют смешение наночастиц с воздухом для транспортировки в камеру сгорания, в которой запускают процесс диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус вторичных кластеров не должен превышать 25 нм и определяется из соотношения, после чего происходит самопроизвольная атомизация вторичных кластеров.

В известном способе для осуществления диспергации наночастиц используется быстрый нагрев в ударной волне, который приводит к энергетическим потерям на его организацию и возможным разрушающим последствиям воздействия ударной волны на конструкцию двигателя.

Кроме того, выбор материалов ядра и оболочки наночастиц ограничен бором и его соединениями.

Техническая проблема, решаемая заявляемым изобретением, заключается в возникновении энергетических потерь и возможном разрушении двигателя при организации ударной волны.

Технический результат, обеспечиваемый предлагаемым изобретением, заключается в повышении энергетических характеристик и надежности работы двигателя.

Технический результат достигается тем, что в способе диспергирования трудновоспламеняемых наночастиц, состоящих из ядра и оболочки, осуществляют смешение наночастиц с воздухом для транспортировки в камеру сгорания, в которой запускают процесс диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус r вторичных кластеров не должен превышать 25 нм и определяется из соотношения:

где:

R - радиус наночастицы;

с - скорость звука в ядре;

σ - коэффициент поверхностного натяжения ядра;

ρ - плотность ядра,

после чего происходит самопроизвольная атомизация вторичных кластеров, отличающийся тем, что для запуска процесса диспергации наночастиц в камере сгорания экспонируют их рентгеновским излучением с интенсивностью J и длиной волны λ, определяемыми из соотношений:

где:

σm - разрушающее механическое напряжение оболочки;

d - толщина оболочки;

ε0 - диэлектрическая проницаемость вакуума;

ε1 - диэлектрическая проницаемость оболочки;

ρв1 - удельное электрическое сопротивление оболочки;

с0 - скорость света в вакууме;

h - постоянная Планка;

е - заряд электрона,

при этом радиус R наночастицы и толщина d ее оболочки ограничены соотношениями:

где:

М0 - молярная масса материала оболочки;

Na - число Авогадро;

ρ0 - плотность материала оболочки.

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как только совокупность всех действий и операций, составляющих изобретение, позволяет устранить недостатки, присущие известным способам.

Способ диспергирования трудновоспламеняемых наночастиц осуществляется следующим образом.

Исходные трудновоспламеняемые наночастицы могут быть получены по известному из уровня техники способу (Бакулин В.Н. и др., «Энергоемкие горючие для авиационных и ракетных двигателей», Москва, Физматлит, 2009).

В качестве наночастиц могут быть использованы наночастицы алюминия (Al) с ядрами в жидком состоянии, наночастицы бора (B) в аморфном состоянии или схожие с ними по энергетическим и физическим свойствам вещества.

Наиболее подходящим диаметром наночастиц является 10 нм - 1 мкм (Кулешов П.С., «О диспергировании наночастиц алюминия», «Горение и взрыв», 2019, Т. 12, №3, с. 118-127).

В качестве оболочки могут использоваться соединения, образующиеся естественным образом в воздухе (Al2O3, В2О3), или наносимые искусственно (В4С, TiB2, ZrB2, BN, HfB2), причем последние защищают ядра наночастиц от окисления в воздухе и дают энергетический выход при сжигании.

В качестве примера теплового двигателя для осуществления заявленного способа может использоваться воздушно-реактивный двигатель (ВРД), схема и описание работы которого приведены в патенте RU 2633730.

Осуществляют смешение трудновоспламеняемых наночастиц, состоящих из ядра и оболочки, с воздухом для транспортировки в камеру сгорания ВРД, в которой экспонируют их рентгеновским излучением с интенсивностью J и длиной λ волны, определяемыми из соотношений:

которое способствует запуску процесса диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус r вторичных кластеров не должен превышать 25 нм и определяется из соотношения:

В частности, длина волны, необходимая для диспергирования наночастиц бора и алюминия, составляет 3-8 нм. Такое излучение может быть получено в камере сгорания с использованием рентгеновской трубки или естественно-радиоактивного материала, распад которого сопровождается выделением короткоживущих радионуклидов и слабопроникающей радиацией, что вызывает фотоэффект, в процессе которого происходит зарядка и как следствие, кулоновский взрыв наночастицы.

При этом в камере сгорания возникает зона быстрой зарядки наночастиц и их диспергации с образованием вторичных кластеров, за которой вниз по потоку вдоль осевой координаты двигателя образуется зона атомизации вторичных кластеров, в которой происходит самопроизвольная атомизация вторичных кластеров, самовоспламенение и горение фрагментов оболочки в нагретом воздухе. Выпуск продуктов сгорания происходит через реактивное сопло ВРД. Раскаленные газообразные продукты сгорания формируют тягу в ВРД на стенках камеры сгорания и сопла.

Радиус R наночастицы и толщина d ее оболочки ограничены соотношениями:

Приведенные соотношения для J, λ, R и d следуют из известного уровня техники (Кулешов П.С., «Электрическая диспергация оксидированных наночастиц», Труды 62-ой Всероссийской научной конференции МФТИ, 18-24 ноября 2019, Аэрокосмические технологии, Москва-Долгопрудный-Жуковский. МФТИ. 2019. с. 307-308. ISBN978-5-7417-0729-6).

Ниже описаны примеры использования предложенного способа.

Предварительно были получены наночастицы алюминия и бора с радиусом

R ~ 100 нм

и толщиной оболочки

d ~ 2 нм.

По проведенным оценкам при реализации способа, на диспергацию одной наночастицы алюминия радиусом 100 нм необходима энергия импульса

~ 10-13 - 10-12 Дж

рентгеновского излучения, или (с учетом коэффициента полезного действия рентгеновской трубки)

~ 10-11 Дж

подводимой энергии к трубке, а при сжигании наночастицы в воздухе выделяется

~ 10-10 Дж.

Для диспергации одной наночастицы бора с таким же радиусом 100 нм необходима энергия импульса

~ 10-20 - 10-18 Дж,

или (с учетом коэффициента полезного действия рентгеновской трубки)

~ 10-18 - 10-16 Дж

подводимой энергии к трубке.

При этом при сжигании наночастицы бора в воздухе также выделяется

~ 10-10 Дж.

Таким образом, заявленный способ диспергирования трудновоспламеняемых наночастиц обеспечивает значительное снижение энергетических потерь для наночастиц алюминия и бора, что подтверждает достижение заявленного технического результата - повышение энергетических характеристик и надежности работы двигателя.

Дополнительным преимуществом заявленного изобретения является расширение диапазона материалов ядра и оболочки наночастиц.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 204.
27.09.2013
№216.012.702a

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентилятора газотурбинного двигателя на вибростенде

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентиляторов газотурбинного двигателя на вибростенде содержит узел фиксации, предназначенный для удержания и фиксации демпфирующего устройства, узел ориентации, размещенный на станине вибростенда, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002494365
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.739e

Лопатка осевой лопаточной машины

Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. Лопатка лопаточной машины содержит профилированное перо, комлевую часть, а также хвостовик типа «ласточкин хвост» и выполнена из ориентированных...
Тип: Изобретение
Номер охранного документа: 0002495255
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.73ad

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком...
Тип: Изобретение
Номер охранного документа: 0002495270
Дата охранного документа: 10.10.2013
10.01.2014
№216.012.93c1

Способ изготовления накладки передней кромки композиционной лопатки вентилятора

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении накладки передней кромки композиционной лопатки вентилятора газотурбинного двигателя. Заготовку из титанового сплава профилируют в вертикальной и горизонтальной плоскостях. После профилирования...
Тип: Изобретение
Номер охранного документа: 0002503519
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9f18

Устройство оптимизации радиальных зазоров многоступенчатого осевого компрессора авиационного газотурбинного двигателя

Устройство для оптимизации радиальных зазоров многоступенчатого осевого компрессора газотурбинного авиационного двигателя сжатым воздухом, отводимым из компрессора, содержит корпус с проточной частью. Сжатый воздух последовательно проходит внутренние полости ступеней компрессора. Ротор каждой...
Тип: Изобретение
Номер охранного документа: 0002506436
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b41f

Гибридный турбореактивный авиационный двигатель

Гибридный турбореактивный авиационный двигатель содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, и контроллер. Выход камеры сгорания связан через...
Тип: Изобретение
Номер охранного документа: 0002511829
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b45e

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке, содержащих камеру сгорания, заключается в поступлении на ее вход потока углеводородного топлива и потока воздуха, сжатого в компрессоре до высокого давления. Топливовоздушную смесь воспламеняют, а полученные при...
Тип: Изобретение
Номер охранного документа: 0002511893
Дата охранного документа: 10.04.2014
20.06.2014
№216.012.d234

Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета и электронный блок

Изобретение относится к области авиации, в частности к системам диагностики технического состояния летательных аппаратов. Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета включает пьезоэлектрические датчики вибрации, которые установлены на...
Тип: Изобретение
Номер охранного документа: 0002519583
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d4ab

Газотурбинная установка

Изобретение относится к энергетике. Газотурбинная установка содержит воздушный компрессор, газовую турбину и электрогенератор, установленные на одном валу, теплообменник с нагревающим и нагреваемым контурами, камеру сгорания, источник топлива и трубопроводные вентили. Дополнительно установка...
Тип: Изобретение
Номер охранного документа: 0002520214
Дата охранного документа: 20.06.2014
27.07.2014
№216.012.e4e9

Способ получения водорода

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным...
Тип: Изобретение
Номер охранного документа: 0002524391
Дата охранного документа: 27.07.2014
Показаны записи 11-17 из 17.
13.01.2017
№217.015.7987

Способ работы газотурбинной установки непрерывного действия

Изобретение может быть использовано в стационарных газотурбинных установках в камере сгорания топлива. Способ работы газотурбинной установки непрерывного действия заключается в сжатии поступающего воздуха в компрессоре, подаче сжатого воздуха и топлива в первую камеру сгорания, сжигании в...
Тип: Изобретение
Номер охранного документа: 0002599407
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.9a0d

Способ снижения заметности летательного аппарата

Изобретение может быть использовано для защиты от обнаружения летательных аппаратов (ЛА), оборудованных реактивными двигателями. Способ снижения заметности ЛА в видимом и инфракрасном диапазоне электромагнитных волн, излучаемых горячими продуктами сгорания реактивного двигателя, заключается в...
Тип: Изобретение
Номер охранного документа: 0002609816
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.af49

Способ организации воспламенения и горения топлива в поршневом двигателе

Изобретение относится к двигателестроению и может быть использовано при организации рабочего процесса в поршневом двигателе. Технический результат заключается в повышении стабильности работы двигателя, расширении диапазона его устойчивой работы. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002610874
Дата охранного документа: 17.02.2017
10.05.2018
№218.016.3896

Нанокомпозитное твердое горючее для прямоточного воздушно-реактивного двигателя

Изобретение относится к созданию нанокомпозитного твердого горючего для прямоточного воздушно-реактивного двигателя, которое может применяться в различных ракетных системах, например, противоракетной, противовоздушной обороны, ракетных систем залпового огня и другого назначения. Твердое горючее...
Тип: Изобретение
Номер охранного документа: 0002646933
Дата охранного документа: 12.03.2018
10.07.2018
№218.016.6ebf

Способ инициирования импульсной детонации

Изобретение относится к способам детонационного сжигания топлива и может быть использовано для инициирования импульсной детонации в топливно-воздушной смеси в энергетических установках, импульсных детонационных двигателях. Способ инициирования импульсной детонации топливно-воздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002659415
Дата охранного документа: 02.07.2018
02.10.2019
№219.017.ccd4

Способ диспергирования трудновоспламеняемых наночастиц бора

Изобретение относится к тепловым двигателям, в которых для производства механической работы используется теплота сгорания твердого топлива, в частности топлива из трудновоспламеняемых наночастиц бора. Способ характеризуется тем, что наночастицы бора пассивируют твердыми покрытиями с...
Тип: Изобретение
Номер охранного документа: 0002701249
Дата охранного документа: 25.09.2019
20.04.2023
№223.018.4b54

Способ удаления кислорода из жидкого топлива

Способ может применяться в системах подачи жидкого топлива в камеру сгорания авиационных двигателей в процессе их работы, в топливных магистралях нефтеперерабатывающих комплексов и иных топливных системах. Для удаления кислорода на жидкое топливо одновременно в течение заданного времени...
Тип: Изобретение
Номер охранного документа: 0002766511
Дата охранного документа: 15.03.2022
+ добавить свой РИД