×
23.05.2023
223.018.6e46

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ СБРОСНОГО СКАНДИЙСОДЕРЖАЩЕГО РАСТВОРА УРАНОВОГО ПРОИЗВОДСТВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов. Способ включает операцию экстракции скандия на твердом экстрагенте ТВЭКС, реэкстракцию скандия, возвращение реэкстрагированного ТВЭКС на операцию экстракции скандия, осаждение фторида тория из раствора реэкстракции скандия с получением дезактивированного раствора реэкстракции скандия, из которого осаждают концентрат фторида скандия с получением фильтрата, который насыщают фтористоводородной кислотой и повторно направляют на операцию реэкстракции скандия, и обработку концентрата фторида скандия. При этом перед возвращением реэкстрагированного ТВЭКС на операцию экстракции скандия его промывают раствором серной кислоты с получением раствора промывки, который направляют на операцию экстракции скандия. Обработку концентрата фторида скандия проводят концентрированной серной кислотой при массовом соотношении концентрат фторида скандия:серная кислота 1:1-5, температуре 180-220°С в течение 1-5 ч с получением спека, который далее растворяют в воде при соотношении спек:вода 1:5-20 с получением раствора скандия, из которого осаждают труднорастворимое соединение скандия, которое прокаливают с получением оксида скандия, или раствор скандия направляют непосредственно на получение оксида скандия. Обеспечивается снижение потерь скандия, приводящее к увеличению его сквозного извлечения, малооперационность и возможность применения более дешевых реагентов. 1 з.п. ф-лы, 6 ил., 6 пр.

Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана.

В виду того, что скандий не имеет своих минералов, технология его концентрирования и извлечения всегда связана с попутным выделением при переработке руд редких и цветных металлов. Незначительные концентрации скандия в таких технологических растворах (0,1÷10 мг/дм3) на фоне значительных концентраций макрокомпонентов определили в качестве наиболее эффективных методов первичного избирательного концентрирования - сорбционные методы.

В настоящее время в гидрометаллургии наметилась устойчивая тенденция замены универсальных сорбционных материалов более прогрессивными экстракционно-хроматографическими. Среди экстракционно-хроматографических сорбентов наибольший интерес, прежде всего благодаря своей доступности, представляют комплексообразующие сорбенты, в которых в качестве неподвижной фазы используются эффективные комплексообразующие органические соединения, нековалентным образом закрепленные на поверхности полимерного носителя (так называемые импрегнированные сорбенты или твердые экстрагенты - ТВЭКС). Всестороннее изучение таких сорбционных материалов позволило в последнее время внедрить их в технологию скандия, в частности, в технологию его попутного извлечения при переработке урановых руд.

Так, известен способ извлечения скандия из скандийсодержащего раствора на твердом экстрагенте с повышенной селективной избирательностью по скандию (ТВЭКС) («Способ извлечения скандия из скандийсодержащего продуктивного раствора», № RU2612107C от 22.07.2015 г.). Кислотность скандийсодержащего продуктивного раствора доводят до рН=1÷2. Перед реэкстракцией осуществляют промывку ТВЭКС раствором серной кислоты с концентрацией 50÷200 г/дм3. Реэкстракцию ведут реэкстракционной суспензией, образованной смешением раствора фтористоводородной кислоты и соосадителя в виде свежеприготовленного раствора фторида кальция. При этом насыщенную по скандию после реэкстракции суспензию фильтруют с получением концентрата скандия, фильтрат донасыщают по фтористоводородной кислоте и соосадителю с получением реэкстракционной суспензии, которую повторно направляют на реэкстракцию, а ТВЭКС после реэкстракции возвращают на извлечение скандия. Недостатком способа является присутствия в системе большого количества соосадителя - труднорастворимого фторида кальция, что повышает последующие затраты на выделение чистого оксида скандия.

Из известных аналогов наиболее близким к заявленному изобретению по совокупности признаков и назначению является способ («Способ переработки сбросных скандийсодержащих растворов уранового производства», RU2622201C от 28.03.2016 г.), включающий операцию экстракции скандия на твердом экстрагенте (ТВЭКС) реэкстракцию скандия, возвращение реэкстрагированного ТВЭКС на операцию экстракции скандия, осаждение фторида тория из раствора реэкстракции скандия, осаждение концентрата фторида скандия из дезактивированного раствора реэкстракции скандия с получением фильтрата, который насыщают по фтористоводородной кислоте и повторно направляют на операцию реэкстракции скандия, обработку концентрата фторида скандия с получением труднорастворимого соединения скандия, которое направляют на получение алюмо-скандиевой лигатуры или оксида скандия.

Преимуществом способа является то, что в результате его реализации конечным продуктом - труднорастворимым соединением скандия - является фторид скандия, из которого без промежуточных операций можно получать алюмоскандиевую лигатуру. При этом, в качестве недостатков способа можно отметить, что в случае ориентирования на получение оксида скандия по данному способу, будет необходимо вводить дополнительную операцию конверсии фторида скандия в гидроксид скандия. Данная операция ресурсно- и энергорасходная, что приводит к увеличению затрат при получении оксида скандия.Дополнительным недостатком способа является то, что после проведения реэкстракции скандия в объеме ТВЭКС может оставаться значительное количество раствора реэкстракции скандия (пленочная, межзерновая и внутризерновая влага), содержащего значительное количество скандия и при возвращении реэкстрагированного ТВЭКС на операцию экстракции скандия, данный раствор будет теряться, что будет снижать сквозную степень извлечения скандия.

В основу изобретения положена задача, обеспечивающая разработку способа переработки сбросного скандийсодержащего раствора уранового производства, позволяющего снизить затраты на получение оксида скандия и повысить степень извлечения скандия.

При этом, техническим результатом заявляемого изобретения является уменьшение затрат за счет применения более дешевых реагентов, малооперационность, снижение потерь скандия, приводящее к увеличению его сквозного извлечения.

Технический результат достигается тем, что способ переработки сбросного скандийсодержащего раствора уранового производства включающий, согласно аналогу, операцию экстракции скандия на твердом экстрагенте (ТВЭКС), реэкстракцию скандия, возвращение реэкстрагированного ТВЭКС на операцию экстракции скандия, осаждение фторида тория из раствора реэкстракции скандия, осаждение концентрата фторида скандия из дезактивированного раствора реэкстракции скандия с получением фильтрата, который насыщают по фтористоводородной кислоте и повторно направляют на операцию реэкстракции скандия, обработку концентрата фторида скандия с получением труднорастворимого соединения скандия, которое направляют на получение оксида скандия, отличается тем, что перед возвращением реэкстрагированного ТВЭКС на операцию экстракции скандия, его промывают раствором серной кислоты с концентрацией 0,5÷10 г/дм3 с получением раствора промывки, который направляют на операцию экстракции скандия, а обработку концентрата фторида скандия проводят концентрированной серной кислотой при массовом соотношении концентрат фторида скандия:серная кислота = 1:1÷5, температуре 180÷220°С в течении 1÷5 часов с получением спека, который далее растворяют в воде при соотношении спек:вода=1:5÷20 с получением раствора скандия из которого осаждают труднорастворимое соединение скандия или направляют непосредственно на операцию получения оксида скандия. При этом, соотношение раствора промывки, направляемого на операцию экстракции скандия и сбросного скандийсодержащего раствора уранового производства, должно составлять 1:10÷20.

Использование дополнительной операции промывки реэкстрагированного ТВЭКС позволяет извлечь из фазы ТВЭКС остаточный раствор реэкстракции (пленочная, межзерновая и внутризерновая влага), который может содержать до 10% от экстрагированного на ТВЭКС скандия. При высокой стоимости скандия - это является значительной потерей. Использование для промывки раствора серной кислоты определяет то, что такой раствор применяется в основной урановой технологии и использование других растворов (азотнокислый, солянокислый) может снизить показатели эффективности основной технологии. При концентрации раствора серной кислоты менее 0,5 г/дм3 могут начаться процессы, приводящие к эмульгированию и вымыванию комплексообразующего органического соединения из фазы ТВЭКС, что может привести к деградации эксплуатационных свойств ТВЭКС. Использование раствора серной кислоты с концентрацией более 10 г/дм3 не приводит к повышению вымывания остаточного раствора реэкстракции из фазы ТВЭКС, а формирует только перерасход серной кислоты.

Полученный раствор промывки целесообразно направить на операцию экстракции скандия из сбросного скандийсодержащего раствора уранового производства для доизвлечения вымытого из фазы реэкстрагированного ТВЭКС скандия.

Разбавление раствора промывки необходимо для получения условий, способствующих наиболее благоприятному экстрагированию скандия - появлению градиента концентраций. При разбавлении раствора промывки сбросным скандийсодержащим раствором уранового производства менее чем в 10 раз концентрация ионов фтора в полученном растворе, подаваемом на ТВЭКС, будет значительна, что будет приводить не только к отсутствию экстракции скандия, но и к реэкстракции того скандия, который экстрагировал ТВЭКС из сбросного скандийсодержащего раствора уранового производства до начала проведения данной операции. При превышении разбавления раствора промывки сбросным скандийсодержащим раствором уранового производства более чем в 20 раз градиент концентраций будет незначителен, эффекта донасыщения ТВЭКС не будет, экстракция скандия происходить не будет. При разбавлении раствора промывки сбросным скандийсодержащим раствором уранового производства в интервале 10÷20 раз концентрация скандия и фтора будут способствовать как дополнительной экстракции скандия насыщенным ТВЭКС, так и отсутствию негативного влияния ионов фтора на процесс экстракции скандия.

Обработка концентрата фторида скандия концентрированной серной кислотой (конверсия фторида скандия) позволяет получать спек, который после растворения в воде (раствор скандия) можно обработать раствором щавелевой кислоты с получением труднорастворимого соединения скандия - оксалата скандия, после прокаливания которого можно получить оксид скандия или направить непосредственно на операцию жидкостной экстракции - операцию, которая способствует получению оксида скандия. Это решительно уменьшает, как количество технологических переделов по сравнению с аналогом, так и затраты, т.к. стоимость серной кислоты в десятки раз меньше стоимости щелочного агента в соответствии с аналогом (например гидроксида натрия). Оптимальный интервал массового соотношения концентрат фторида скандия:серная кислота = 1:1÷5, определяется тем, что при величине массового соотношения менее 1:1 уменьшается степень конверсии фторида скандия вследствие недостатка серной кислоты, при величине массового соотношения более 1:5 суспензия становится слишком жидкой и не происходит твердофазной реакции, что так же уменьшает степень конверсии фторида скандия.

Температура так же имеет важное значение для операции обработки концентрата фторида скандия: при температуре менее 180°С твердофазная реакция идет не полно, что уменьшает степень конверсии фторида скандия, при температуре более 220°С начинает возгоняться серная кислота, фториды, составляющие концентрат фторида скандия, что так же уменьшает степень конверсии фторида скандия.

Времени обработки концентрата фторида скандия менее 1 часа недостаточно для проведения операции конверсии фторида скандия ввиду долгой кинетики реакции, после пяти часов проведения реакции степень конверсии достигает максимума и не увеличивается.

Дальнейшее растворение спека в воде с получением раствора скандия регулируется интервалом соотношения спек:вода 1:5÷20. При значении соотношения менее 5, в варианте дальнейшего осаждения оксалата скандия, наблюдается повышенное соосаждения примесей с оксалатом скандия из раствора скандия, при большем значении соотношения степень осаждения оксалата скандия из раствора скандия падает. В варианте дальнейшего использования раствора скандия на операции получения оксида скандия методом жидкостной экстракции, при значении соотношения менее 5, концентрация скандия достаточно велика, что приводит к образованию третьей фазы, снижающей показатели экстракции, при большем значении соотношения наблюдается повышенная степень реэкстракции примесных элементов, что снижает степень чистоты оксида скандия.

Сущность изобретения поясняется фигурами, на которых изображено:

- фиг. 1 - таблица, показывает влияние концентрации серной кислоты в растворе промывки на степень извлечения из фазы ТВЭКС остаточного раствора реэкстракции и остаточное содержание комплексообразующего органического соединения в фазе ТВЭКС;

- фиг. 2 - таблица, показывает влияние соотношения раствора промывки и сбросного скандийсодержащего раствора уранового производства на степень извлечения скандия из раствора промывки;

- фиг. 3 - таблица, показывает влияние массового соотношения концентрат фторида скандия:серная кислота на степень извлечения скандия из раствора промывки;

- фиг. 4 - таблица, показывает влияние температуры обработки концентрата фторида скандия на степень конверсии фторида скандия в водорастворимый сульфат скандия;

- фиг. 5 - таблица, показывает влияние времени обработки концентрата фторида скандия на степень конверсии фторида скандия в водорастворимый сульфат скандия;

- фиг. 6 - таблица, показывает влияние соотношения спек:вода на степень выхода скандия и содержание примесей в получаемых соединениях в зависимости от операции по переработке раствора скандия.

Осуществление заявляемого способа подтверждается следующими примерами.

Пример 1. Шесть одинаковых партий ТВЭКС, поместили в однотипные сорбционные колонки и насытили сбросным скандийсодержащим раствором по Sc. Далее провели операцию реэкстракцию скандия. Сорбционные колонки опорожнили от раствора реэкстракции скандия и пропустили через них равные объемы раствора с содержанием серной кислоты 0.1, 0.5, 1, 5, 10 и 20 г/дм3. Полученные растворы промывки анализировали на содержание Sc. ТВЭКС после данной операции извлекли из сорбционных колонок, высушили и взвесили. Каждую партию высушенного ТВЭКС обработали равным объёмом органического растворителя (толуол), после чего ТВЭКС опять высушили и взвесили. По разнице масс ТВЭКС до и после промывки органическим растворителем рассчитали содержание комплексообразующего органического соединения в фазе ТВЭКС.

Из данных, представленных на Фиг.1 можно видеть, что использование дополнительной операции промывки реэкстрагированного ТВЭКС позволяет извлечь из фазы ТВЭКС остаточный раствор реэкстракции (пленочная, межзерновая и внутризерновая влага) на 90%. При концентрации раствора серной кислоты менее 0,5 г/дм3 остаточное содержание комплексообразующего органического соединения в фазе ТВЭКС вследствие эмульгирования и вымывания уменьшилось практически на 40%. Использование раствора серной кислоты с концентрацией более 10 г/дм3 не приводит к повышению вымывания остаточного раствора реэкстракции из фазы ТВЭКС, что формирует перерасход серной кислоты.

Пример 2. Десять одинаковых партий ТВЭКС, поместили в однотипные сорбционные колонки и насытили сбросным скандийсодержащим раствором по Sc. После насыщения, подачу сбросного скандийсодержащего раствора на все сорбционные колонки остановили. Далее, в пяти из них провели операцию реэкстракции скандия. Сорбционные колонки опорожнили от раствора реэкстракции скандия и пропустили через них равные объемы раствора с содержанием серной кислоты 5 г/дм3. Полученные пять одинаковых растворов промывки разбавили в соотношении раствор промывки и сбросной скандийсодержащий раствор уранового производства равном 5, 10, 15, 20, 30. Полученные растворы пропустили через оставшиеся пять сорбционных колонок с насыщенным скандием ТВЭКС. Растворы после сорбционных колонок собрали и проанализировали в них содержание скандия. По полученным данным оценили степень извлечения скандия из раствора промывки.

Из данных, представленных на Фиг. 2 видно, что при разбавлении раствора промывки сбросным скандийсодержащим раствором уранового производства менее чем в 10 раз экстракции скандия не происходит. При превышении разбавления раствора промывки сбросным скандийсодержащим раствором уранового производства более чем в 20 раз эффекта донасыщения ТВЭКС не наблюдается, экстракции скандия так же не происходит.

Пример 3. Пять одинаковых партий ТВЭКС, поместили в однотипные сорбционные колонки и насытили сбросным скандийсодержащим раствором по Sc. Далее, в каждой из сорбционных колонок провели операцию реэкстракцию скандия. Из полученных растворов реэкстракции осадили фторид тория, отфильтровали фторид тория. Из дезактивированных растворов реэкстракции скандия осадили концентраты фторида скандия. Отфильтровали концентраты фторида скандия. Полученные пять осадков концентратов фторида скандия обработали концентрированной серной кислотой при массовом соотношении концентрат фторида скандия:серная кислота 1:0,5, 1:1, 1:2, 1:5, 1:10, в течении двух часов при температуре 200 °С. Полученные спеки растворили в воде при соотношении спек:вода 1:10. Растворы проанализировали на содержание скандия. По результатам анализа оценили степень конверсии фторида скандия.

Из данных, представленных на Фиг. 3 видно, что при величине массового соотношения менее 1:1 степень конверсии фторида скандия незначительна и составляет около 30%, при величине массового соотношения более 1:5 суспензия становится слишком жидкой, степень конверсии не превышает 30%.

Пример 4. Пять одинаковых партий ТВЭКС, поместили в однотипные сорбционные колонки и насытили сбросным скандийсодержащим раствором по Sc. Далее, в каждой из сорбционных колонок провели операцию реэкстракцию скандия. Из полученных растворов реэкстракции осадили фторид тория, отфильтровали фторид тория. Из дезактивированных растворов реэкстракции скандия осадили концентраты фторида скандия. Отфильтровали концентраты фторида скандия. Полученные пять осадков концентратов фторида скандия обработали концентрированной серной кислотой при массовом соотношении концентрат фторида скандия:серная кислота 1:2, в течении двух часов при различных температурах 150, 180, 200, 220, 250 °С. Полученные спеки растворили в воде при соотношении спек:вода 1:10. Растворы проанализировали на содержание скандия. По результатам анализа оценили степень конверсии фторида скандия

Из данных, представленных на Фиг. 3 видно, что при температуре менее 180°С твердофазная реакция конверсии идет не полно, при температуре более 220°С начинает возгоняться серная кислота, фториды, составляющие концентрат фторида скандия, что так же уменьшает степень конверсии фторида скандия.

Пример 5. Пять одинаковых партий ТВЭКС, поместили в однотипные сорбционные колонки и насытили сбросным скандийсодержащим раствором по Sc. Далее, в каждой из сорбционных колонок провели операцию реэкстракцию скандия. Из полученных растворов реэкстракции осадили фторид тория, отфильтровали фторид тория. Из дезактивированных растворов реэкстракции скандия осадили концентраты фторида скандия. Отфильтровали концентраты фторида скандия. Полученные пять осадков концентратов фторида скандия обработали концентрированной серной кислотой при массовом соотношении концентрат фторида скандия:серная кислота 1:2, в течении 0,5, 1, 2, 5, 7 часов при температуре 200 °С. Полученные спеки растворили в воде при соотношении спек:вода 1:10. Растворы проанализировали на содержание скандия. По результатам анализа оценили степень конверсии фторида скандия.

Из данных, представленных на Фиг. 5 видно, что при времени обработки концентрата фторида скандия менее 1 часа степень конверсии фторида скандия незначительна ввиду долгой кинетики реакции, после пяти часов проведения реакции степень конверсии достигает максимума и не далее увеличивается.

Пример 6. Десять одинаковых партий ТВЭКС, поместили в однотипные сорбционные колонки и насытили сбросным скандийсодержащим раствором по Sc. Далее, в каждой из сорбционных колонок провели операцию реэкстракцию скандия. Из полученных растворов реэкстракции осадили фторид тория, отфильтровали фторид тория. Из дезактивированных растворов реэкстракции скандия осадили концентраты фторида скандия. Отфильтровали концентраты фторида скандия. Полученные десять осадков концентратов фторида скандия обработали концентрированной серной кислотой при массовом соотношении концентрат фторида скандия:серная кислота 1:2, в течении 2 часов при температуре 200 °С. Полученные спеки растворили в воде при соотношении спек:вода 1:2, 1:5, 1:10, 1:20, 1:30 для каждых пяти образцов. Полученные первые пять растворов скандия обработали насыщенным раствором щавелевой кислоты. Полученные растворы проанализировали на скандий и основные примеси. Оксалат скандия отфильтровали, прокалили до оксида скандия. Оксид скандия проанализировали на содержание скандия и примесей. По результатам анализов оценили степень осаждения оксалата скандия и содержание примесей в оксиде скандия. Вторые пять растворов скандия обработали каждый методом жидкостной экстракции с дальнейшим получения оксида скандия по способу («Способ получения оксида скандия из концентрата скандия» RU2618012C2 от 15.10.2015 г.). По результатам анализов растворов по стадиям оценили степень экстракционного извлечения скандия и содержание примесей в полученном оксиде скандия.

Из данных, представленных на Фиг. 6 видно, что при значении соотношения спек:вода менее 5, в варианте осаждения оксалата скандия, наблюдается повышенное соосаждения примесей с оксалатом скандия из раствора скандия, что отражается в их большей концентрации в оксиде скандия, при соотношении спек:вода более 20 степень осаждения оксалата скандия из раствора скандия падает. В варианте дальнейшего использования раствора скандия на операции получения оксида скандия методом жидкостной экстракции, при значении соотношения спек:вода менее 5, концентрация скандия достаточно велика, что приводит к образованию третьей фазы, снижающей показатели экстракции, степень экстракции в данных условиях составляет всего 61%, при соотношении спек:вода более 20 наблюдается повышенная степень экстракции примесных элементов, что снижает степень чистоты оксида скандия, содержание примесей в оксиде возрастает до 2,2%.


СПОСОБ ПЕРЕРАБОТКИ СБРОСНОГО СКАНДИЙСОДЕРЖАЩЕГО РАСТВОРА УРАНОВОГО ПРОИЗВОДСТВА
СПОСОБ ПЕРЕРАБОТКИ СБРОСНОГО СКАНДИЙСОДЕРЖАЩЕГО РАСТВОРА УРАНОВОГО ПРОИЗВОДСТВА
Источник поступления информации: Роспатент

Показаны записи 121-130 из 207.
23.08.2019
№219.017.c2db

Способ монтажа сборной части ригеля и монтажное приспособление для его осуществления

Изобретение к области строительства, в частности к способу монтажа ригеля и приспособлению для его монтажа. Технический результат заключается в повышении технологической надежности процесса монтажа. Способ монтажа сборной части ригеля включает установку ригеля на монтажные столики, закрепление...
Тип: Изобретение
Номер охранного документа: 0002697985
Дата охранного документа: 21.08.2019
27.08.2019
№219.017.c3de

Способ прокатки в валках с волнообразным профилем бочки

Изобретение относится к обработке металлов давлением и может быть использовано при прокатке литых слябов в черновых клетях листопрокатного стана горячей прокатки. Способ включает прокатку в два прохода, в первом проходе осуществляется обжатие заготовки высотой h в валках с волнообразным...
Тип: Изобретение
Номер охранного документа: 0002698241
Дата охранного документа: 23.08.2019
02.09.2019
№219.017.c5ed

Способ извлечения хрома (vi) из растворов с получением железо-хромового осадка

Изобретение может быть использовано в гальванотехнике при утилизации хромсодержащих стоков. Способ извлечения хрома (VI) из хромсодержащих растворов гальванических производств с получением малообводненного железо-хромсодержащего осадка включает введение в хромсодержащий раствор...
Тип: Изобретение
Номер охранного документа: 0002698810
Дата охранного документа: 30.08.2019
05.09.2019
№219.017.c78b

Способ получения высокоглинозёмистого цемента

Изобретение относится к области производства высокоглиноземистого цемента, в частности к его производству при комплексном использовании продуктов комбинированного безотходного обогащения низкокачественных бокситов. Технический результат изобретения - обеспечение возможности использования...
Тип: Изобретение
Номер охранного документа: 0002699090
Дата охранного документа: 03.09.2019
07.09.2019
№219.017.c867

Способ ковки раскатных колец

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении кованых раскатных колец из труднодеформируемой стали. Осуществляют обжатие стенки кольца по периметру посредством бойка и оправки с поворотом кольца. За первый оборот кольца обжатие его...
Тип: Изобретение
Номер охранного документа: 0002699428
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cd9d

Способ синтеза слоистых гидроксинитратов гадолиния

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных...
Тип: Изобретение
Номер охранного документа: 0002700509
Дата охранного документа: 17.09.2019
04.10.2019
№219.017.d1ea

Конструкция антенной решетки свч с частотным сканированием

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Технической задачей изобретения является существенное увеличение сектора сканирования антенны с высоким быстродействием, оптимизация...
Тип: Изобретение
Номер охранного документа: 0002701877
Дата охранного документа: 02.10.2019
13.12.2019
№219.017.ecf7

Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20°С. Инфракрасная волоконно-оптическая...
Тип: Изобретение
Номер охранного документа: 0002708814
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed04

Способ термической обработки износостойких втулок буровых насосов нефтегазового оборудования из инструментальных хромистых сталей

Изобретение относится к области производства деталей бурового нефтегазового оборудования, в частности цилиндровых втулок бурового насоса из стали Х12МФЛ, работающих в условиях абразивного износа, коррозионного воздействия и высоких переменных давлениях. Для увеличения ресурса работы цилиндровых...
Тип: Изобретение
Номер охранного документа: 0002708722
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed4e

Анод для электролитических ванн

Изобретение относится к области гальванотехники и может быть использовано в гальванических процессах для растворения отходов медных сплавов. Предложенный анод представляет собой перфорированный контейнер из неэлектропроводного материала, устойчивого к воздействию электролита, с насыпной...
Тип: Изобретение
Номер охранного документа: 0002708725
Дата охранного документа: 11.12.2019
Показаны записи 31-33 из 33.
16.06.2023
№223.018.7a2f

Способ производства автомобильного трехмаршрутного катализатора

Предложен способ производства автомобильного трехмаршрутного катализатора. Способ содержит стадии приготовления водной суспензии, содержащей композицию на основе оксидов церия и циркония, оксид алюминия, соль модификатора и раствор соли драгоценных металлов; нанесение суспензии на субстрат,...
Тип: Изобретение
Номер охранного документа: 0002738984
Дата охранного документа: 21.12.2020
16.06.2023
№223.018.7b8d

Способ синтеза композиции на основе оксида алюминия и твердого раствора оксидов церия и циркония

Изобретение относится к способам получения композиционных порошковых материалов гидрометаллургическим способом, а именно к композициям на основе стабилизированного оксида алюминия и твердого раствора оксидов церия и циркония, которые могут быть применены как носители каталитически активной фазы...
Тип: Изобретение
Номер охранного документа: 0002755558
Дата охранного документа: 17.09.2021
16.06.2023
№223.018.7c1a

Способ приготовления биметаллических палладий-родиевых катализаторов (варианты)

Изобретение относится к способам (вариантам) получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Первое изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, включающему...
Тип: Изобретение
Номер охранного документа: 0002744920
Дата охранного документа: 17.03.2021
+ добавить свой РИД