×
23.05.2023
223.018.6cb8

Результат интеллектуальной деятельности: Способ захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытательной техники, в частности к наземным тепловакуумным испытаниям космических объектов. Способ захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации заключается в том, что устанавливают испытываемую систему в вакуумную камеру, вакуумируют вакуумную камеру и захолаживают испытываемую систему. Подают жидкий азот в полость криоэкрана. Жидкий азот подают с расходом, обеспечивающим газообразную фазу азота на выходе из криоэкрана. При достижении квазистационарного состояния по температуре криоэкрана, близкой к температуре кипения жидкого азота, определяют максимальную величину расхода жидкого азота. Уменьшают подачу жидкого азота. При достижении допустимой максимальной температуры криоэкрана определяют минимальную величину расхода жидкого азота. Поддерживают диапазон от максимальной до минимальной величины расхода жидкого азота в процессе функционирования испытываемой системы. Достигается сокращение общего времени проведения испытаний.

Изобретение относится к области испытательной техники, в частности к наземным тепловакуумным испытаниям космических объектов в условиях, приближенных к эксплуатации космических объектов в открытом космическом пространстве, а также может найти применение в тех областях техники, где предъявляются повышенные требования к вопросам теоретических и экспериментальных исследований при отработке тепловых режимов.

При проведении тепловакуумных испытаний, например, автоматического космического аппарата, который во время штатной эксплуатации может иметь различные траектории полета и режимы работы аппаратуры, очень трудно реализовать многочисленные рабочие режимы, поэтому возникает необходимость воспроизвести экстремальные условия полета, одним из которых является создание предельно низких значений температур на объекте.

Известен способ захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации, заключающийся в том, что устанавливают систему в вакуумную камеру, вакуумируют вакуумную камеру до заданного значения и одновременно захолаживают систему, подавая жидкий азот в полость криоэкрана, контролируют температуру на системе и испытывают ее (патент РФ № 2205140, МПК: B64G 7/00 (2006.01), опубликовано 27.05.2003. Бюл. № 15).

Наиболее близким по технической сущности к предлагаемому изобретению является способ захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации, заключающийся в том, что устанавливают систему в вакуумную камеру, имеющую криоэкран, вакуумируют вакуумную камеру до заданного давления и захолаживают систему, подавая жидкий азот в полость криоэкрана, контролируют температуру на испытываемой системе во время ее функционирования, по окончании испытаний отогревают криоэкран и разгерметизируют вакуумную камеру (Патент РФ № 2172709, МПК: B64G 7/00 (2000.01), опубликовано 27.08.2001. Бюл. № 24). Этот способ принят за прототип.

Недостатком аналога и прототипа является то, что достижение предельно низких температур этими способами довольно длительный процесс, который связан с большими энергозатратами и трудозатратами, а именно: большим расходом дорогостоящего жидкого азота при захолаживании и длительным временем выхода на режим. При захолаживании испытываемой системы криоэкран вакуумной камеры, как правило, полностью заполняют жидким азотом и поддерживают на криоэкране температуру (минус 196)°С (жидкая фаза азота). Чтобы создать равномерное температурное поле вокруг испытываемой системы и имитировать условия «холодного) космоса, допустимая максимальная температура криоэкрана должна быть не выше (минус 170)°С, которую можно получить, продувая криоэкран холодным газообразным азотом под давлением из резервуара жидкого азота, и это даст ощутимую экономию дорогостоящего жидкого азота. При этой температуре переизлученные теплопритоки от стенок вакуумной камеры, технологической оснастки и испытываемой системы не должны превышать 10 Вт/м2. Если температура криоэкрана становится выше (минус 170)°С, то эти внешние теплопритоки начинают увеличиваться, в результате чего увеличиваются погрешности имитации теплового состояния испытываемой системы, что приводит к недостоверности наземных тепловакуумных испытаний и невозможности верификации расчетной тепловой модели изделия. Кроме того, меньше времени будет затрачено на отогрев криоэкрана после испытаний, так как его температура в процессе испытаний будет выше температуры кипения жидкого азота.

Задачей изобретения является сокращение расхода жидкого азота в моделируемых условиях штатной эксплуатации испытываемой системы, а также сокращение общей продолжительности испытаний.

Техническим результатом изобретения является снижение энерго- и трудозатрат, сокращение общего времени проведения испытаний.

Технический результат достигается за счет того, что в способе захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации, заключающимся в том, что устанавливают испытываемую систему в вакуумную камеру, имеющую криоэкран, вакуумируют вакуумную камеру до заданного давления и захолаживают испытываемую систему путем подачи жидкого азота в полость криоэкрана, контролируют температуру на испытываемой системе в процессе ее функционирования, по окончании испытаний отогревают криоэкран и разгерметизируют вакуумную камеру, при этом жидкий азот подают с расходом, обеспечивающим газообразную фазу азота на выходе из криоэкрана, при достижении квазистационарного состояния по температуре криоэкрана, близкой к температуре кипения жидкого азота, определяют максимальную величину расхода жидкого азота, уменьшают подачу жидкого азота в полость криоэкрана, поддерживая газообразную фазу азота на выходе из криоэкрана, при достижении допустимой максимальной температуры криоэкрана, при которой обеспечивается имитация космических условий при штатной эксплуатации испытываемой системы, определяют минимальную величину расхода жидкого азота, поддерживают диапазон от максимальной до минимальной величины расхода жидкого азота в процессе функционирования испытываемой системы.

По сравнению с прототипом заявленное техническое решение позволяет экономить дорогостоящий жидкий азот и сократить общее время наземных тепловакуумных испытаний.

Предлагаемый способ реализуется следующим образом:

- устанавливают в вакуумную камеру, имеющую криоэкран, испытываемую систему;

- вакуумируют вакуумную камеру (например, ВКЗ-1, ПАО «РКК «Энергия») до заданного давления (например, 1-10° мм рт. ст.);

- захолаживают испытываемую систему путем подачи в полость криоэкрана жидкого азота под давлением (например, 1,2 кгс/см2) из резервуара жидкого азота (например, ЦТК-8/0,25М3) через криогенный клапан (например, АМК334, НПО «Регулятор») с расходом, обеспечивающим газообразную фазу азота на выходе из криоэкрана;

- контролируют температуру на испытываемой системе с помощью датчиков температур (например, ТЭП 018-06) в процессе ее функционирования;

- при достижении квазистационарного состояния по температуре криоэкрана, близкой к температуре кипения жидкого азота, например, (минус 190±1)°С, определяют максимальную величину расхода жидкого азота через криогенный клапан, фиксируя положение задвижки криогенного клапана;

- уменьшают подачу жидкого азота в полость криоэкрана под давлением (например, 1,1 кгс/см2) из резервуара жидкого азота (например, ЦТК-8/0,25М3) через криогенный клапан, поддерживая газообразную фазу азота на выходе из криоэкрана, при достижении допустимой максимальной температуры криоэкрана, например, (минус 171±1)°С, при которой обеспечивается имитация космических условий при штатной эксплуатации испытываемой системы, определяют минимальную величину расхода жидкого азота через криогенный клапан, фиксируя положение задвижки криогенного клапана;

- поддерживают диапазон от максимальной до минимальной величины расхода жидкого азота (например, регулируя в автоматическом режиме положение задвижки криогенного клапана) в процессе функционирования испытываемой системы;

- по окончании испытаний отогревают криоэкран путем подачи в него теплого воздуха (например, до температуры 20°С) и разгерметизируют вакуумную камеру.

В настоящее время способ находится на этапе экспериментальной отработки и проведенные эксперименты показали, что при захолаживании одной из систем космического объекта в вакуумной камере объемом 6 м3 при испытании по способу прототипу было израсходовано 1800 кг жидкого азота, а общее время эксперимента с учетом времени отогрева составило 25 часов, а по предлагаемому изобретению на эксперимент израсходовали 1620 кг жидкого азота при общей длительности эксперимента 23 часа.

Предлагаемое техническое решение позволяет уменьшить расход дорогостоящего жидкого азота и сократить общее время испытаний.

Предлагаемый способ достаточно прост в эксплуатации, не требует разработки нового оборудования и может найти применение для получения данных при решении проблем, связанных с обеспечением теплового режима космических объектов.

Способ захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации, заключающийся в том, что устанавливают испытываемую систему в вакуумную камеру, имеющую криоэкран, вакуумируют вакуумную камеру до заданного давления и захолаживают испытываемую систему путем подачи жидкого азота в полость криоэкрана, контролируют температуру на испытываемой системе в процессе ее функционирования, по окончании испытаний отогревают криоэкран и разгерметизируют вакуумную камеру, отличающийся тем, что жидкий азот подают с расходом, обеспечивающим газообразную фазу азота на выходе из криоэкрана, при достижении квазистационарного состояния по температуре криоэкрана, близкой к температуре кипения жидкого азота, определяют максимальную величину расхода жидкого азота, уменьшают подачу жидкого азота в полость криоэкрана, поддерживая газообразную фазу азота на выходе из криоэкрана, при достижении допустимой максимальной температуры криоэкрана, при которой обеспечивается имитация космических условий при штатной эксплуатации испытываемой системы, определяют минимальную величину расхода жидкого азота, поддерживают диапазон от максимальной до минимальной величины расхода жидкого азота в процессе функционирования испытываемой системы.
Источник поступления информации: Роспатент

Показаны записи 101-110 из 111.
15.05.2023
№223.018.5c6e

Стенд для тепловакуумных испытаний элементов космических аппаратов

Изобретение относится к испытаниям элементов космических аппаратов (КА) с имитацией условий космического пространства. Стенд содержит вакуумную камеру (ВК) с системой ее вакуумирования (СВ), криогенный экран, расположенный по внутреннему контуру ВК, имитатор внешних тепловых потоков, систему...
Тип: Изобретение
Номер охранного документа: 0002759359
Дата охранного документа: 12.11.2021
15.05.2023
№223.018.5c6f

Стенд для тепловакуумных испытаний элементов космических аппаратов

Изобретение относится к испытаниям элементов космических аппаратов (КА) с имитацией условий космического пространства. Стенд содержит вакуумную камеру (ВК) с системой ее вакуумирования (СВ), криогенный экран, расположенный по внутреннему контуру ВК, имитатор внешних тепловых потоков, систему...
Тип: Изобретение
Номер охранного документа: 0002759359
Дата охранного документа: 12.11.2021
15.05.2023
№223.018.5ca7

Суборбитальный космический корабль и способ его торможения в атмосфере

Группа изобретений относится к управлению и конструкции космических кораблей (КК) многократного применения с вертикальным взлетом и посадкой, которые могут быть использованы для космического туризма, высотных парашютных прыжков и др. Суборбитальный КК содержит раму, посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002759358
Дата охранного документа: 12.11.2021
15.05.2023
№223.018.5ca8

Суборбитальный космический корабль и способ его торможения в атмосфере

Группа изобретений относится к управлению и конструкции космических кораблей (КК) многократного применения с вертикальным взлетом и посадкой, которые могут быть использованы для космического туризма, высотных парашютных прыжков и др. Суборбитальный КК содержит раму, посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002759358
Дата охранного документа: 12.11.2021
23.05.2023
№223.018.6c9e

Способ обезгаживания элементов конструкции космических аппаратов в наземных условиях

Изобретение относится к области испытательной техники, в частности к испытаниям изделий, например, космических аппаратов (КА) на обезгаживание в условиях, приближенных к эксплуатационным, и может быть использовано в космической технике при проведении испытаний комплектующих КА: аппаратуры,...
Тип: Изобретение
Номер охранного документа: 0002778479
Дата охранного документа: 22.08.2022
23.05.2023
№223.018.6cd9

Способ испытаний изделий на герметичность

Изобретение относится к области испытательной техники, в частности, к испытаниям изделий космической техники на герметичность, и может найти применение в таких областях техники, как газовая промышленность, атомное машиностроение, авиастроение. Способ испытаний изделий на герметичность включает...
Тип: Изобретение
Номер охранного документа: 0002770228
Дата охранного документа: 14.04.2022
23.05.2023
№223.018.6ce2

Способ имитации давления в вакуумной камере при наземной проверке космических аппаратов на работоспособность

Изобретение относится к области испытательной техники, в частности, к наземной проверке космических аппаратов (КА). Способ имитации давления в вакуумной камере при наземной проверке КА на работоспособность, при котором помещают КА в вакуумную камеру, вакуумируют её и проверяют КА на...
Тип: Изобретение
Номер охранного документа: 0002770327
Дата охранного документа: 15.04.2022
23.05.2023
№223.018.6d09

Способ проведения тепловакуумных испытаний при наземной проверке космических аппаратов на работоспособность

Изобретение относится к области испытательной техники, в частности к наземной проверке космических аппаратов (КА) на работоспособность. Способ проведения тепловакуумных испытаний при наземной проверке КА на работоспособность включает помещение КА в вакуумную камеру, вакуумирование камеры,...
Тип: Изобретение
Номер охранного документа: 0002772763
Дата охранного документа: 25.05.2022
17.06.2023
№223.018.7e82

Инженерная луномашина и способ её эксплуатации

Группа изобретений относится к инженерным машинам, предназначенным для эксплуатации в природных условиях Луны и других небесных тел, имеющих твердую поверхность. Инженерная луномашина содержит несущий ферменный каркас, ходовую часть, пульт и блоки управления, оборудование...
Тип: Изобретение
Номер охранного документа: 0002770387
Дата охранного документа: 15.04.2022
17.06.2023
№223.018.7e84

Мобильный модуль поддержки внекабинной деятельности космонавтов на поверхности луны и способ его эксплуатации

Группа изобретений относится к космической технике, в частности к транспортным средствам для перемещения по поверхности Луны и другим небесным телам. Мобильный модуль поддержки внекабинной деятельности космонавтов на поверхности Луны содержит несущий ферменный каркас, ходовую часть,...
Тип: Изобретение
Номер охранного документа: 0002770328
Дата охранного документа: 15.04.2022
Показаны записи 11-15 из 15.
15.05.2023
№223.018.5c6f

Стенд для тепловакуумных испытаний элементов космических аппаратов

Изобретение относится к испытаниям элементов космических аппаратов (КА) с имитацией условий космического пространства. Стенд содержит вакуумную камеру (ВК) с системой ее вакуумирования (СВ), криогенный экран, расположенный по внутреннему контуру ВК, имитатор внешних тепловых потоков, систему...
Тип: Изобретение
Номер охранного документа: 0002759359
Дата охранного документа: 12.11.2021
23.05.2023
№223.018.6c9e

Способ обезгаживания элементов конструкции космических аппаратов в наземных условиях

Изобретение относится к области испытательной техники, в частности к испытаниям изделий, например, космических аппаратов (КА) на обезгаживание в условиях, приближенных к эксплуатационным, и может быть использовано в космической технике при проведении испытаний комплектующих КА: аппаратуры,...
Тип: Изобретение
Номер охранного документа: 0002778479
Дата охранного документа: 22.08.2022
23.05.2023
№223.018.6cd9

Способ испытаний изделий на герметичность

Изобретение относится к области испытательной техники, в частности, к испытаниям изделий космической техники на герметичность, и может найти применение в таких областях техники, как газовая промышленность, атомное машиностроение, авиастроение. Способ испытаний изделий на герметичность включает...
Тип: Изобретение
Номер охранного документа: 0002770228
Дата охранного документа: 14.04.2022
23.05.2023
№223.018.6ce2

Способ имитации давления в вакуумной камере при наземной проверке космических аппаратов на работоспособность

Изобретение относится к области испытательной техники, в частности, к наземной проверке космических аппаратов (КА). Способ имитации давления в вакуумной камере при наземной проверке КА на работоспособность, при котором помещают КА в вакуумную камеру, вакуумируют её и проверяют КА на...
Тип: Изобретение
Номер охранного документа: 0002770327
Дата охранного документа: 15.04.2022
23.05.2023
№223.018.6d09

Способ проведения тепловакуумных испытаний при наземной проверке космических аппаратов на работоспособность

Изобретение относится к области испытательной техники, в частности к наземной проверке космических аппаратов (КА) на работоспособность. Способ проведения тепловакуумных испытаний при наземной проверке КА на работоспособность включает помещение КА в вакуумную камеру, вакуумирование камеры,...
Тип: Изобретение
Номер охранного документа: 0002772763
Дата охранного документа: 25.05.2022
+ добавить свой РИД