×
23.05.2023
223.018.6c61

Результат интеллектуальной деятельности: Стенд для испытания газогенератора турбореактивного двухконтурного двигателя

Вид РИД

Изобретение

№ охранного документа
0002739168
Дата охранного документа
21.12.2020
Аннотация: Изобретение относится к испытаниям авиационных воздушно-реактивных двигателей и может быть использовано в авиационной промышленности. Изобретение позволяет обеспечить комплексную проверку прочностных характеристик и газодинамического соответствия узлов газогенератора ТРДД, в том числе на переходных режимах работы в расширенном диапазоне условий эксплуатации газогенератора в составе ТРДД по высоте и числу Маха полета. Стенд содержит систему подачи воздуха, систему отвода газа, входное устройство, выхлопное устройство, подводящий, выхлопной и байпасный воздушные трубопроводы, технологический канал наружного контура двигателя, ресивер, устройство для выравнивания потока воздуха, систему отвода воздуха, две выхлопные шахты и термобарокамеру с размещенной внутри нее динамометрической платформой, предназначенной для установки испытываемого газогенератора. Выхлопное устройство включает последовательно соединенные эжектор-газовод, выхлопной диффузор и газоводяной холодильник. Входное устройство содержит неподвижную часть и подвижную часть, предназначенную для соединения с входом газогенератора. Выхлопной, подводящий и байпасный трубопроводы снабжены запорно-регулирующими устройствами. 1 з.п. ф-лы, 5 ил.

Изобретение относится к испытаниям авиационных воздушно-реактивных двигателей, а именно к стендам для испытания газогенераторов турбореактивных двухконтурных двигателей (ТРДД), и может найти применение в авиационной промышленности.

Известен стенд для испытаний турбореактивного двухконтурного двигателя (RU 2467302, 2012), содержащий систему подачи воздуха, систему отвода газа, входное устройство, выхлопное устройство, подводящий и выхлопной воздушные трубопроводы, ресивер и термобарокамеру с размещенной внутри нее динамометрической платформой, предназначенной для установки испытываемого ТРДД, причем подводящий трубопровод снабжен запорно-регулирующими устройствами, выход системы подачи воздуха сообщен с подводящим трубопроводом, а вход системы отвода газа сообщен с выхлопным трубопроводом, выхлопное устройство установлено на выходе термобарокамеры и сообщено с входом системы отвода газа посредством выхлопного трубопровода, подводящий трубопровод сообщен с входом ресивера, выход ресивера сообщен с входным устройством через насадок.

Недостатком известного технического решения является то, что оно не предназначено для испытания газогенераторов и не содержит средств, позволяющих производить испытания в соответствии с требованиями, предусмотренными в п. 5.1 «Методики испытаний газогенератора ГТД по проверке его работоспособности и эффективности» в «Руководстве по испытаниям авиационных двигателей на высотных и климатических стендах», ЦИАМ, 2012, с. 65 (далее - Методика испытаний).

Наиболее близким аналогом заявленного изобретения является стенд для испытания газогенератора турбореактивного двухконтурного двигателя (RU 2622588, 2017), содержащий систему подачи воздуха, систему отвода газа, входное устройство, выхлопное устройство, подводящий, выхлопной и байпасный воздушные трубопроводы, причем выхлопной и байпасный трубопроводы снабжены запорно-регулирующими устройствами, выход системы подачи воздуха сообщен с подводящим трубопроводом, а вход системы отвода газа сообщен с выхлопным трубопроводом.

Недостатком известного стенда для испытания газогенератора ТРДД является то, что он позволяет проводить испытания в ограниченных условиях по полному давлению Р*ВХ и заторможенной температуре Т*ВХ на входе в газогенератор в условиях избыточного давления воздуха на входе в газогенератор выше атмосферного, что преимущественно соответствует режимам проведения тензометрирования газогенератора.

Для подачи воздуха на вход в газогенератор в известном стенде используется отбор воздуха от наружного контура технологического ТРДД типа Д-30Т, минимальное полное давление которого не может быть меньше 125 кПа. При меньших значениях давления в канале наружного контура технологического ТРДД из-за уменьшения величины отношения частот вращения роторов компрессора высокого давления и компрессора низкого давления (КНД) в соответствии с характеристикой рабочих режимов КНД технологического ТРДД может произойти помпаж КНД.

При этом заторможенная температура Т*ВХ потока воздуха, подаваемого на входе в газогенератор, существенно зависит от температуры окружающей среды в атмосфере, что может не позволить проводить климатические испытания газогенератора при пониженных температурах потока воздуха на входе, например, при отработке запуска газогенератора в высотных условиях и при проверке отсутствия виброгорения в камере сгорания газогенератора.

В известном стенде также отсутствуют технические средства, позволяющие установить величину статического давления РБ на стенде вне рабочей струи газов из реактивного сопла газогенератора ниже атмосферного. Данный недостаток, в частности, не позволяет имитировать на стенде крейсерские условия полета

Η=11 км (РБ=22,61 кПа),

и число Маха

МП=0,8,

вследствие чего линия рабочих режимов на характеристике компрессора газогенератора сместится в сторону границы неустойчивых режимов, что приведет к уменьшению запасов его газодинамической устойчивости и к перегреву материала турбины высокого давления газогенератора. При этом также может измениться величина равнодействующей осевой силы, действующая на радиально-упорный подшипник газогенератора.

Существенными являются также ограничения в выполнении изменения подачи воздуха в известном стенде при различных режимах работы газогенератора, т.к. используемые для этой цели запорно-регулирующие устройства предназначены только для экстренного изменения расхода воздуха, перепускаемого в атмосферу из наддутого в аварийной ситуации воздуховода, например, при помпаже газогенератора или технологического ТРДД, или могут быть использованы только при величине полного давления перед входом в газогенератор, превышающей величину атмосферного давления.

Еще одним недостатком известного стенда является отсутствие средств для обеспечения уменьшения уровня неравномерности скорости потока и интенсивности пульсаций давления потока на входе газогенератора.

В известном стенде также отсутствуют средства, позволяющие испытывать газогенератор с технологическим каналом наружного контура ТРДД, например, ТРДД с КНД с подпорными ступенями типа ПД-14, в который необходимо подвести поток с параметрами по полному давлению и заторможенной температуре, соответствующими параметрам за вентилятором ТРДД, а на вход в газогенератор - с параметрами, соответствующими параметрам за подпорными ступенями КНД, что не соответствует требованиям п. 5.1 указанной выше Методики испытаний.

Техническая проблема, на решение которой направлено заявленное изобретение, заключается в отсутствии средств, позволяющих испытывать газогенератор в расширенном диапазоне условий его эксплуатации в составе ТРДД, в том числе по полному давлению Р*ВХ, заторможенной температуре Т*ВХ, статическому давлению РБ на стенде, а также на переходных режимах работы.

Технический результат, достигаемый при осуществлении заявленного изобретения, заключается в обеспечении комплексной проверки прочностных характеристик и газодинамического соответствия узлов газогенератора ТРДД, в том числе на переходных режимах работы в расширенном диапазоне условий эксплуатации газогенератора в составе ТРДД по высоте и числу Маха полета.

Заявленный технический результат достигается за счет того, что стенд для испытания газогенератора турбореактивного двухконтурного двигателя содержит систему подачи воздуха, систему отвода газа, входное устройство, выхлопное устройство, подводящий, выхлопной и байпасный воздушные трубопроводы, причем выхлопной и байпасный трубопроводы снабжены запорно-регулирующими устройствами, первый выход системы подачи воздуха сообщен с подводящим трубопроводом, а вход системы отвода газа сообщен с выхлопным трубопроводом, при этом стенд дополнительно снабжен технологическим каналом наружного контура двигателя, ресивером, устройством для выравнивания потока воздуха, системой отвода воздуха, двумя выхлопными шахтами и термобарокамерой с размещенной внутри нее динамометрической платформой, предназначенной для установки испытываемого газогенератора, при этом выхлопное устройство включает последовательно соединенные эжектор-газовод, выхлопной диффузор и газоводяной холодильник, подводящий воздушный трубопровод снабжен запорно-регулирующим устройством, входное устройство содержит неподвижную часть и подвижную часть, предназначенную для соединения с входом газогенератора, устройство для выравнивания потока воздуха установлено перед первым выходом ресивера, выхлопное устройство установлено на выходе термобарокамеры и сообщено с входом системы отвода газа посредством выхлопного трубопровода, подводящий трубопровод сообщен с входом ресивера, первый выход ресивера сообщен с входным устройством через насадок, второй выход ресивера сообщен с входом системы отвода воздуха посредством байпасного трубопровода, а выхлопные шахты сообщены соответственно с выхлопным и байпасным трубопроводами и снабжены запорно-регулирующими устройствами.

Существенные признаки могут иметь развитие и продолжение. На втором выходе системы подачи воздуха может быть установлен дополнительный трубопровод с запорно-регулирующим устройством, причем выход дополнительного трубопровода снабжен расходомерным коллектором и гибким сильфоном, выход которого соединен с технологическим каналом наружного контура двигателя.

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как только совокупность признаков, составляющих изобретение, позволяет обеспечить комплексную проверку прочностных характеристик и газодинамического соответствия узлов газогенератора ТРДД, в том числе на переходных режимах работы в расширенном диапазоне условий эксплуатации газогенератора в составе ТРДД по высоте и числу Маха полета.

Техническое решение позволяет проводить испытания газогенератора в условиях, максимально имитирующих условия эксплуатации газогенератора в составе ТРДД, в соответствии с требованиями, предусмотренными в п. 5.1 Методики испытаний.

Настоящее изобретение поясняется иллюстрациями, представленными на фигурах 1-5, где:

на фиг. 1 показана общая схема стенда для испытания газогенератора ТРДД;

на фиг. 2 показана схема системы отвода газа;

на фиг. 3 показана конструкция входного устройства стенда;

на фиг. 4 показана схема фрагмента стенда для испытания газогенератора ТРДД с дополнительным трубопроводом;

на фиг. 5 представлена область испытаний газогенератора в координатах эксплуатации ТРДД по высоте (Н) и числу (МП) Маха полета в составе дозвукового самолета на заявленном стенде.

Стенд для испытания газогенератора турбореактивного двухконтурного двигателя включает систему 1 подачи воздуха, систему 2 отвода газа, входное устройство 3, выхлопное устройство 4, подводящий воздушный трубопровод 5, выхлопной воздушный трубопровод 6, байпасный воздушный трубопровод 7, технологический канал 8 наружного контура двигателя, ресивер 9, устройство 10 для выравнивания потока воздуха, систему 11 отвода воздуха, первую выхлопную шахту 12, вторую выхлопную шахту 13 и термобарокамеру 14 с размещенной внутри нее динамометрической платформой 15, предназначенной для установки испытываемого газогенератора 16 (фиг. 1).

Первый выход системы 1 подачи воздуха сообщен с подводящим трубопроводом 5, а вход системы 2 отвода газа сообщен с выхлопным трубопроводом 6. Устройство 10 для выравнивания потока воздуха установлено перед первым выходом ресивера 9, выхлопное устройство 4 установлено на выходе термобарокамеры 14 и сообщено с входом системы 2 отвода газа посредством выхлопного трубопровода 6, подводящий трубопровод 5 сообщен с входом ресивера 9, первый выход ресивера 9 сообщен с входным устройством 3 через насадок 17, второй выход ресивера 9 сообщен с входом системы 11 отвода воздуха посредством байпасного трубопровода 7, а выхлопные шахты 12, 13 сообщены соответственно с выхлопным и байпасным трубопроводами 6, 7 и снабжены запорно-регулирующими устройствами 18, 19.

Система 1 подачи воздуха предназначена для обеспечения требуемых величин полного давления, заторможенной температуры потока воздуха перед испытываемым газогенератором и массового расхода воздуха. Система 1 подачи воздуха в частном случае (Скибин В.А., «Современные методы и оборудование для испытаний воздушно-реактивных двигателей», Москва, МАТИ, 2000, с. 21, 283-289) включает в свой состав всасывающие шахты, запорно-регулирующие устройства, воздушные фильтры, компрессоры, воздуховодяные и высокотемпературные холодильники, холодильную турбину и воздушный смеситель (на чертежах не показаны).

Подводящий, выхлопной и байпасный трубопроводы 5, 6, 7 снабжены запорно-регулирующими устройствами 20, 21, 22, 23.

Выхлопное устройство 4 включает последовательно соединенные эжектор-газовод 24, выхлопной диффузор 25 и газоводяной холодильник 26.

В частном случае каждая из систем 2 и 11 включает две параллельно соединенные эксгаустерные станции 27 и 28 соответственно, каждая из которых включает последовательно соединенные запорно-регулирующие устройства 29, газоводяной холодильник 30 и эксгаустер 31 (фиг. 2). Выход каждой эксгаустерной станции 27, 28 соединен с выхлопной шахтой 32.

В качестве входного устройства 3 может быть использовано входное устройство, конструкция которого описана в патенте (RU 2439526, 2012). Входное устройство 3 содержит неподвижную часть 33 и подвижную часть 34, предназначенную для соединения с входом газогенератора 16 (см. фиг. ). Неподвижная и подвижная части 33, 34 соединяются посредством лабиринтного уплотнения 35. Подвижная часть 34 закреплена на динамометрической платформе 15 посредством опорных и опорно-упорных стоек 36 и 37 соответственно.

Динамометрическая платформа 15 может быть закреплена на упругой подвеске (на чертеже не показана) типа лент сжатия или лент растяжения (Павлов Ю.И. и др. «Проектирование испытательных стендов для авиационных двигателей», Москва, «Машиностроение», 1979, с. 89-105) к термобарокамере 14 и позволяет измерять силу от тяги газогенератора 16, который в частном случае может быть установлен на подмоторной раме 38, закрепленной на динамометрической платформе 15.

Устройство 10 для выравнивания потока воздуха в частном случае включает защитную сетку 39, выравнивающие сетки 40 для обеспечения требуемой неравномерности скорости потока и интенсивности пульсаций давления и размещенное между ними устройство 41 типа «хонейкомб» для устранения крупномасштабных вихрей, выпрямления потока в осевом направлении и устранения крутки потока перед входом в газогенератор 16 после поворотов потока в трубопроводе на 180° (Р. Пэнкхерст и Д. Холдер. «Техника эксперимента в аэродинамических трубах». Изд. «Иностранной литературы», М., 1955, с. 86-90).

Насадок 17 может быть выполнен по профилю сопла Витошинского или по профилю лемнискаты.

В частном случае на втором выходе системы 1 подачи воздуха установлен дополнительный трубопровод 42 с запорно-регулирующим устройством 43, причем выход дополнительного трубопровода 42 снабжен расходомерным коллектором 44 и гибким сильфоном 45, выход которого соединен с технологическим каналом 8 наружного контура двигателя (см. фиг. 4).

Запорно-регулирующие устройства (ЗРУ) 18, 19, 20, 21, 22, 23, 29, 43 могут быть выполнены в виде дросселей различных конструкций (Насонов В.Н., Павлов Ю.И. и др., "Проектирование технологического оснащения высотных стендов для испытаний авиационных двигателей". Москва, МАТИ, 2005, с. 104-123). Привод дросселя может быть механическим (с помощью гидравлических приводов) и электромеханическим (с помощью шаговых двигателей). Запорно-регулирующие устройства регулируют расход воздуха, изменяя параметры течения воздушной среды, протекающей через него, вплоть до полного прекращения (закрытое положение дросселя).

Стенд для испытания газогенератора турбореактивного двухконтурного двигателя работает следующим образом.

Поток воздуха от системы 1 подачи воздуха с требуемыми параметрами, соответствующими полному давлению Р*КНД и температуре Т*КНД торможения за компрессором низкого давления (КНД) ТРДД с подпорными или без подпорных ступеней по подводящему трубопроводу 5 поступает в ресивер 9, проходит через устройство 10 для выравнивания потока воздуха и по подвижной (выходной) части 34 входного устройства 3 поступает на вход испытываемого газогенератора 16.

Поток газа из реактивного сопла испытываемого газогенератора 16 при испытаниях в условиях, близких к наземным

(Н ≈ 0 км, МП ≥ 0),

направляется в выхлопное устройство 4, в котором происходит его предварительное охлаждение, и далее по выхлопному трубопроводу 6 в атмосферу через первую выхлопную шахту 12 при закрытом ЗРУ 21 и открытом ЗРУ 18, а при имитации вакуумных давлений в термобарокамере 14 при закрытом ЗРУ 18 и открытом ЗРУ 21 направляется в систему 2 отвода газа.

Для обеспечения переходных режимов работы газогенератора 16 (приемистость или сброс газа) и поддержания при этом постоянной величины полного давления на входе в газогенератор 16 воздух перепускается из ресивера 9 с помощью байпасного трубопровода 7 при открытых ЗРУ 22, 23 и закрытом ЗРУ 19 в систему 11 отвода воздуха в случае разряжения давления в ресивере 9 или при открытых ЗРУ 19, 22 и закрытом ЗРУ 23 во вторую выхлопную шахту 13 так, что при приемистости газогенератора 16 перепуск расхода воздуха из ресивера 9 в атмосферу уменьшается, а при сбросе газа газогенератора 16 перепуск расхода воздуха из ресивера 9 в атмосферу увеличивается. Для поддержания постоянной величины Р*ВХ на переходных режимах работы газогенератора 16 используют поддержание постоянного расхода воздуха через ресивер 9 как суммы расходов воздуха через газогенератор 16 и через байпасный трубопровод 7.

В случае проведения испытаний газогенератора 16 при имитации установившихся режимов работы ТРДД в частном случае ЗРУ 22 закрывают, а в аварийной ситуации при наддуве ресивера 9 ЗРУ 22 и 19 открывают, а ЗРУ 23 закрывают.

В случае имитации условий испытаний газогенератора 16 ТРДД с КНД без подпорных ступеней со смешением потоков и общим реактивным соплом (двухконтурные двигатели типа АЛ-31Ф, РД-33) подвод воздуха осуществляется к входу ресивера 9 на вход в газогенератор 16 с помощью подвижной части 34 входного устройства 3 с параметрами, равными заторможенным параметрам за КНД ТРДД

Р*ВХ - Р*КНД, Т*ВХ=Т*КНД.

При этом конструкция газогенератора 16 может в частном случае также включать внешний кольцевой имитатор канала наружного контура (КНК) ТРДД с общим подводом потока воздуха от подвижной части 34 входного устройства 3 на вход в газогенератор 16 и в КНК.

Подвод воздуха применительно к испытаниям газогенератора 16 ТРДД с подпорными ступенями КНД с общим соплом (ТРДД типа ПС-90) и с раздельными контурами (ТРДД типа ПД-14) для обеспечения имитации теплового и прочностного состояния конструкции газогенератора 16, включая величины радиальных зазоров в рабочих лопатках компрессора и турбины, производится раздельно по подводящему трубопроводу 5 с параметрами, равными заторможенным параметрам за подпорными ступенями КНД ТРДД

Р*ВХ = Р*КНД, Т*ВХ = Т*КНД,

и по дополнительному трубопроводу 42 к технологическому каналу 8 наружного контура двигателя с параметрами, равными заторможенным параметрам за вентилятором КНД ТРДД

Р*КНК = Р*В, Т*КНК = Т*В, где

Р*КНК - полное давление воздуха в технологическом канале 8 наружного контура ТРДД;

Р*В - полное давление воздуха за вентилятором КНД ТРДД;

Т*КНК - заторможенная температура воздуха в технологическом канале 8 наружного контура ТРДД;

Т*В - заторможенная температура воздуха за вентилятором КНД ТРДД, при этом расход воздуха в трубопроводе 42 регулируется с помощью ЗРУ 43.

На фиг. 5 представлена область испытаний газогенератора в координатах эксплуатации ТРДД по высоте (Н) и числу (МП) Маха полета в составе дозвукового самолета на заявленном стенде в сравнении с наиболее близким аналогом (RU 2622588, 2017).

Таким образом, заявленный стенд для испытания газогенератора турбореактивного двухконтурного двигателя позволяет обеспечить комплексность проверки прочностных характеристик и газодинамического соответствия узлов газогенератора:

- в расширенном диапазоне условий эксплуатации газогенератора в составе ТРДД по высоте и числу Маха полета по полному давлению Р*ВХ, заторможенной температуре Т*ВХ и статическому давлению РБ на стенде;

- на переходных режимах работы (приемистость, сброс газа и пр.);

- при имитации теплового состояния конструкции газогенератора за счет имитации условий подвода воздуха к газогенератору как по схеме КНД с подпорными ступенями, так и без подпорных ступеней.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 204.
20.09.2015
№216.013.7d2c

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при...
Тип: Изобретение
Номер охранного документа: 0002563641
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.82f8

Прямоточный воздушно-реактивный двигатель на твердом горючем и способ функционирования двигателя

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло....
Тип: Изобретение
Номер охранного документа: 0002565131
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8cf2

Зубчатое колесо

Изобретение относится к машиностроению и может быть использовано в высоконагруженных зубчатых передачах. Зубчатое колесо содержит обод с зубчатым венцом, ступицу, несущую диафрагму, жестко связанную с ободом и ступицей, и демпфирующий элемент, выполненный в виде лепесткового пластинчатого...
Тип: Изобретение
Номер охранного документа: 0002567689
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a339

Способ сжигания топливо-воздушной смеси и прямоточный воздушно-реактивный двигатель со спиновой детонационной волной

Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной заключается в том, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4 в сверхзвуковом двухступенчатом воздухозаборнике...
Тип: Изобретение
Номер охранного документа: 0002573427
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.02ec

Стенд для циклических испытаний газодинамических подшипников

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит вал, установленный в радиальном подшипнике, закрепленном на станине стенда, установленный на валу испытуемый газодинамический...
Тип: Изобретение
Номер охранного документа: 0002587758
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2d20

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины. Заменяют сопловой аппарат первой ступени (из оставшихся) конвертированной турбины на сопловой аппарат...
Тип: Изобретение
Номер охранного документа: 0002579526
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3221

Способ функционирования турбореактивного двухконтурного двигателя летательного аппарата с выносными вентиляторными модулями

Изобретение позволяет улучшить согласование взлетного и крейсерского режимов работы двигателя и повысить топливную экономичность двигателей гражданской и транспортной авиации. Указанный технический результат достигается тем, что турбореактивный двухконтурный двигатель летательного аппарата с...
Тип: Изобретение
Номер охранного документа: 0002580608
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.3f8b

Муфта составного ротора газогенератора газотурбинного двигателя

Муфта составного ротора газогенератора газотурбинного двигателя содержит средства для передачи крутящего момента и осевого сцепления двух соосных вращающихся колес в виде перемещающихся элементов, размещенных в кольцевых выемках, выполненных в цапфе центробежного колеса компрессора и цапфе...
Тип: Изобретение
Номер охранного документа: 0002584109
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5898

Насос-дозатор

Изобретение относится к системам подачи и дозирования рабочего тела с электроприводными насосами, в частности к системам топливоподачи и управления газотурбинных двигателей. Насос-дозатор содержит насос подачи рабочего тела с регулируемым электроприводом, включающим электродвигатель (ЭД), блок...
Тип: Изобретение
Номер охранного документа: 0002588315
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.713e

Способ определения тяги в полете турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДД и ТРДД с форсажной камерой сгорания ТРДДФ и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла. По замерам полетной...
Тип: Изобретение
Номер охранного документа: 0002596413
Дата охранного документа: 10.09.2016
Показаны записи 1-5 из 5.
13.03.2019
№219.016.deb1

Способ стендовых испытаний турбореактивного двухконтурного двигателя

Изобретение относится к области техники испытаний газотурбинных двигателей, а именно к способам стендовых испытаний турбореактивных двухконтурных двигателей (ТРДД) с проверкой отсутствия автоколебаний рабочих лопаток вентилятора двигателя. В способе стендовых испытаний турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002681548
Дата охранного документа: 11.03.2019
13.03.2019
№219.016.dec2

Способ стендовых испытаний турбореактивного двухконтурного двигателя

Изобретение относится к области техники испытаний газотурбинных двигателей, а именно к способам стендовых испытаний турбореактивных двухконтурных двигателей (ТРДД) с проверкой отсутствия автоколебаний рабочих лопаток вентилятора двигателя. В способе стендовых испытаний турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002681550
Дата охранного документа: 11.03.2019
17.08.2019
№219.017.c0f7

Способ испытания газотурбинного двигателя в термобарокамере высотного стенда

Изобретение относится к испытаниям газотурбинных двигателей, в частности к способам испытаний для определения высотно-скоростных характеристик газотурбинных двигателей в имитируемых полетных условиях по схеме с присоединенным трубопроводом, и может найти применение в авиационной промышленности....
Тип: Изобретение
Номер охранного документа: 0002697588
Дата охранного документа: 15.08.2019
10.10.2019
№219.017.d414

Способ испытания газотурбинного двигателя

Изобретение относится к испытаниям газотурбинных двигателей, в частности к способам испытаний газотурбинных двигателей в боксах испытательных стендов. Способ характеризуется тем, что определяют величину приведенной тяги двигателя в испытательном боксе испытательного стенда с механически...
Тип: Изобретение
Номер охранного документа: 0002702443
Дата охранного документа: 08.10.2019
06.07.2020
№220.018.3014

Способ испытания газотурбинного двигателя

Изобретение относится к испытаниям газотурбинных двигателей в испытательных боксах испытательных стендов и может быть использовано в авиационной промышленности. Способ характеризуется тем, что в испытательном боксе испытательного стенда измеряют величину тяги двигателя с механически...
Тип: Изобретение
Номер охранного документа: 0002725591
Дата охранного документа: 02.07.2020
+ добавить свой РИД