×
22.05.2023
223.018.6b7a

Результат интеллектуальной деятельности: Комплекс для моделирования кольматации и декольматации призабойной зоны скважины

Вид РИД

Изобретение

№ охранного документа
0002795739
Дата охранного документа
11.05.2023
Аннотация: Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для моделирования процессов кольматации и декольматации призабойной зоны скважины в лабораторных условиях. Заявлен комплекс для моделирования кольматации и декольматации призабойной зоны скважины, который включает линию обжима керна, манометр, физическую модель призабойной зоны скважины, стойку физической модели призабойной зоны скважины, лабораторный насос. При этом комплекс дополнительно оснащен головкой-излучателем физической модели призабойной зоны скважины, содержащей фильтрационный канал для подвода рабочей жидкости и ультразвуковой излучатель, головкой-приемником физической модели призабойной зоны скважины, содержащей ультразвуковой приемник, поршневыми контейнерами с промывочной жидкостью, поршневым контейнером с разбавленной кислотой, поршневым контейнером с кислотой, поршневым контейнером большого объема, ловушкой жидкости и твердой фазы, источником газа, лабораторным газометром, трубной обвязкой, включающей линию подачи газа, регулирующую линию подачи газа, линию высокого давления, линию подачи рабочих жидкостей, продувочную линию. Техническим результатом изобретения является увеличение вариативности возможных типов воздействия на керновый материал. 1 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для моделирования процессов кольматации и декольматации призабойной зоны скважины в лабораторных условиях.

Известен стенд для исследования процессов фильтрации углеводородных флюидов [Патент РФ №72347, G09B 23/06 (2006.01), опубл. 10.04.2008, бюл. №10], включающий модель пласта, помещенную в термостатирующий блок, датчики давления и температуры, систему заполнения исследуемыми газами и жидкостями, блок создания рабочего давления и блок разделительных цилиндров, регулятор давления, газовый счетчик, вакуумный насос, систему регулирования и контроля параметров процессов фильтрации, детонационную камеру сгорания для исследования результатов теплового и ударно-волнового воздействия на модели нефтяных и газовых пластов.

Известен стенд для исследования волнового резонансного воздействия на газоконденсатный пласт [Патент РФ №95425, G09B 23/06 (2006.01), опубл. 27.06.2010, бюл. №18], включающий модель пласта, помещенную в термостатирующий блок, датчики давления и температуры, систему заполнения исследуемыми газами и жидкостями, блок создания рабочего давления и блок разделительных цилиндров, регулятор давления, газовый счетчик, вакуумный насос, систему регулирования и контроля параметров процессов фильтрации и генератор высокого давления, который обеспечивает изменение во времени давления на выходе экспериментального участка по заданному закону и дает возможность регулировать это давление по частоте и амплитуде.

Недостатком приведенных аналогов является отсутствие возможности моделирования процессов кольматации и декольматации призабойной зоны скважины, в частности ультразвуковым и сонохимическим воздействием.

Наиболее близким по технической сущности, выбранным в качестве прототипа, является стенд для создания волнового воздействия на керновый материал коллекторов нефтегазоконденсатных месторождений [Патент РФ №139629, G09B 25/00 (2006.01), опубл. 20.04.2014, бюл. №11], включающий модель пласта, нагревательную ленту, поверхностную теплоизоляцию, автоматический двухплунжерный насос высокого давления, рекомбинатор, соединенный с двухплунжерным насосом высокого давления, термодатчик, датчики перепада давления на входе и на выходе, датчик горного давления. При этом модель пласта представляет собой образцы керна в цилиндрической манжете, содержащей приемник для определения параметров волнового воздействия, размещенной в цилиндрическом корпусе камеры гидрообжима, присоединенной на входе с помощью соединительной пластины к излучателю, соединенному с генератором, при этом значения создаваемых давлений и температуры контролируются через связь датчиков перепада давления на выходе и входе, датчика горного давления, термодатчика с аналого-цифровым преобразователем, управляемых с помощью персональной электронно-вычислительной машины в автоматическом режиме.

Недостатком прототипа является низкая вариативность возможных типов воздействия на керновый материал, в том числе отсутствие возможности сонохимического воздействия.

Задачей изобретения является создание комплекса для моделирования кольматации и декольматации призабойной зоны скважины, устраняющего недостатки аналогов и прототипа.

Техническим результатом изобретения является расширение арсенала технических средств для исследования кернового материала с увеличением вариативности возможных типов воздействия на керновый материал.

Поставленная задача и технический результат в комплексе для моделирования кольматации и декольматации призабойной зоны скважины, включающий физическую модель призабойной зоны скважины, выполненную с возможностью размещения в ней образца керна, подвергающегося обжиму линией обжима физической модели призабойной зоны скважины, соединенной с манометром, лабораторный насос, причем физическая модель призабойной зоны скважины установлена на стойках, решается тем, что комплекс дополнительно оснащен головкой-излучателем физической модели призабойной зоны скважины, содержащей фильтрационный канал для подвода рабочей жидкости и ультразвуковой излучатель, установленной на одном конце физической модели призабойной зоны скважины, головкой-приемником физической модели призабойной зоны скважины, содержащей ультразвуковой приемник, установленной на другом конце физической модели призабойной зоны скважины, поршневыми контейнерами с промывочной жидкостью, поршневым контейнером с разбавленной кислотой, поршневым контейнером с кислотой, соединенными посредством линии подачи рабочих жидкостей с головкой-излучателем физической модели призабойной зоны скважины, а также с линией высокого давления, поршневым контейнером большого объема, установленным в паре с лабораторным насосом, связанным с линией высокого давления, ловушкой жидкости и твердой фазы и лабораторным газометром, соединенными продувочной линией с замерным узлом, источником газа, связанным с линией подачи газа и регулирующей линией подачи газа.

Комплекс для моделирования кольматации и декольматации призабойной зоны скважины поясняется с помощью фиг., где представлено схематическое изображение комплекса для моделирования кольматации и декольматации призабойной зоны скважины.

Комплекс для моделирования кольматации и декольматации призабойной зоны скважины состоит из физической модели призабойной зоны скважины 3, включающей сбрасывающий кран 1 для приема рабочих жидкостей (промывочные жидкости, разбавленная кислота, кислота), запорное устройство 2 для отсекания физической модели призабойной зоны скважины 3, головку-излучатель 13, содержащую ультразвуковой излучатель (на фиг. не показан) и фильтрационный канал (на фиг. не показан), в качестве прибора контроля за давлением установлен манометр 5, давление обжима образца керна 14 поступает через линию обжима керна 4, а вся конструкция установлена на стойки 6. Посредством линии подачи газа 16 и регулирующей линии подачи газа 22, физическая модель призабойной зоны скважины 3 соединена с источником газа 21 любым доступным и безопасным способом (на фиг. не показан). Рабочие жидкости, такие как промывочная из поршневых контейнеров 8, 11, разбавленная кислота из поршневого контейнера 9, а также кислота из поршневого контейнера 10 подаются в головку-приемник 15, содержащую приемник волнового воздействия (на фиг. не показано), физическую модель призабойной зоны скважины 3, посредством линии подачи рабочих жидкостей 12, соединенной с поршневыми контейнерами 8, 9, 10, 11 и головкой-приемником 15 любым доступным и безопасным способом (на фиг. не показан), через выход на замерный узел 7. Поршневой контейнер большого объема 20 установлен в паре с лабораторным насосом 19 с целью создания расчетного давления масла и его подачи к поршневым контейнерам 8, 9, 10, 11. При этом взаимодействие поршневого контейнера большого объема 20, лабораторного насоса 19 и поршневых контейнеров 8, 9, 10, 11 осуществляется через линию высокого давления 23. Соединение контейнера большого объема 20, лабораторного насоса 19, поршневых контейнеров 8, 9, 10, 11 и линии высокого давления 23 может быть реализовано любым доступным и безопасным способом (на фиг. не показан). В схеме также предусмотрена продувочная линия 24, соединенная любым доступным и безопасным способом (на фиг. не показан) с лабораторным газометром 17, ловушкой 18 и замерным узлом 7. Лабораторный газометр 17 фиксирует объем продуваемого газа, а ловушка 18 предохраняет лабораторный газометр 17 от возможного попадания твердой и жидкой фазы.

Заявленный комплекс работает следующим образом.

В физическую модель призабойной зоны скважины 3 устанавливают заранее подготовленный образец керна 14. Лабораторные насосы 19 создают необходимое давление масла и посредством линии высокого давления 23 нагнетают его в контейнер большого объема 20. Оттуда давление воздействует на поршневые контейнеры 8, 9, 10, 11 и в зависимости от технического задания происходит закачка рабочих жидкостей (промывочные жидкости, разбавленная кислота, кислота) через линию подачи рабочих жидкостей 12 в физическую модель призабойной зоны скважины 3, посредством выхода на замерный узел 7. Контроль за давлением и режимом осуществляется манометром 5. Далее производится несколько циклов воздействия на образец керна 14, в зависимости от фазы экспериментальных исследований. Помимо воздействия рабочими жидкостями, через фильтрационный канал (на фиг. не показан) головки-излучателя 13 физической модели призабойной зоны скважины 3 также происходит и волновое воздействие ультразвуковым излучателем (на фиг. не показан), размещенным в головке-излучателе 13 физической модели призабойной зоны скважины 3. Регистрация амплитуды, а также результатов волнового воздействия, осуществляется приемником волнового воздействия (на фиг. не показан), размещенным в головке-приемнике 15 физической модели призабойной зоны скважины 3. По окончании воздействия происходит продувка физической модели призабойной зоны скважины 3 с помощью источника газа 21, который представляет собой стальной баллон высокого давления, оснащенный регулируемым редуктором (на фиг. не показан), через регулирующую линию подачи газа 22, линию подачи газа 16 и продувочную линию 24. Объем продуваемого газа фиксируется лабораторными газометрами 17, а после этот объем используется для расчета проницаемости горной породы, его изменение показывает эффективность воздействия. Для предотвращения загрязнения лабораторных газометров 17 в схеме предусмотрены ловушки жидкой и твердой фазы 18.

Применение в конструкции комплекса головки-излучателя, включающей фильтрационный канал для подвода рабочей жидкости и ультразвуковой излучатель, головки-приемника, включающей ультразвуковой приемник, поршневых контейнеров с промывочной жидкостью, поршневого контейнера с разбавленной кислотой, поршневого контейнера с кислотой, поршневого контейнера большого объема, ловушки жидкости и твердой фазы, источника газа, лабораторного газометра, а также трубной комплексной обвязки, представленной линией подачи газа, регулирующей линией подачи газа, линией высокого давления, линией подачи рабочих жидкостей, продувочной линией, обеспечивает возможность реализации моделирования процессов кольматации и декольматации призабойной зоны скважины, как ультразвуковым, так и сонохимическим методом, в результате чего увеличивается вариативность возможных типов воздействия на керновый материал.

Достигается комплексное воздействие на керновый материал в процессе лабораторного моделирования воздействия на призабойную зону скважины, сокращаются временные затраты, за счет возможности поэтапного воздействия на призабойную зону скважины как ультразвуковым, так и сонохимическим методом в рамках единого лабораторного комплекса. Минимизируются внешние воздействия, соблюдается идентичность условий эксперимента за счет отсутствия необходимости замены и/или дополнения конструктивных элементов комплекса, позволяющих выполнять различные виды моделирования, в результате чего повышается точность и достоверность результатов моделирования.

Комплекс для моделирования кольматации и декольматации призабойной зоны скважины, включающий физическую модель призабойной зоны скважины, выполненную с возможностью размещения в ней образца керна, подвергающегося обжиму линией обжима физической модели призабойной зоны скважины, соединенной с манометром, лабораторный насос, причем физическая модель призабойной зоны скважины установлена на стойках, отличающийся тем, что комплекс дополнительно оснащен головкой-излучателем физической модели призабойной зоны скважины, содержащей фильтрационный канал для подвода рабочей жидкости и ультразвуковой излучатель, установленный на одном конце физической модели призабойной зоны скважины, головкой-приемником физической модели призабойной зоны скважины, содержащей ультразвуковой приемник, установленный на другом конце физической модели призабойной зоны скважины, поршневыми контейнерами с промывочной жидкостью, поршневым контейнером с разбавленной кислотой, поршневым контейнером с кислотой, соединенными посредством линии подачи рабочих жидкостей с головкой-излучателем физической модели призабойной зоны скважины, а также с линией высокого давления, поршневым контейнером большого объема, установленным в паре с лабораторным насосом, связанным с линией высокого давления, ловушкой жидкости и твердой фазы и лабораторным газометром, соединенными продувочной линией с замерным узлом, источником газа, связанным с линией подачи газа и регулирующей линией подачи газа.
Комплекс для моделирования кольматации и декольматации призабойной зоны скважины
Комплекс для моделирования кольматации и декольматации призабойной зоны скважины
Источник поступления информации: Роспатент

Показаны записи 51-60 из 100.
09.06.2018
№218.016.5c6a

Аппаратура для контроля защитного изоляционного покрытия технологических и магистральных трубопроводов

Использование: для обнаружения дефектов изоляционного покрытия технологических или магистральных трубопроводов или иных изделий, расположенных в труднодоступных местах. Сущность изобретения заключается в том, что аппаратура для контроля защитного изоляционного покрытия технологических или...
Тип: Изобретение
Номер охранного документа: 0002655991
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5c70

Аппаратура для обнаружения дефектов трубопроводов

Использование: для неразрушающего контроля технического состояния трубопроводов акустическим способом. Сущность изобретения заключается в том, что аппаратура для обнаружения дефектов трубопроводов содержит кольцевую приемо-передающую акустическую систему, выполненную в виде антенных решеток...
Тип: Изобретение
Номер охранного документа: 0002655982
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5c72

Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления

Использование: для обнаружения различных дефектов в трубопроводах и других объектах методом направленных акустических волн. Сущность изобретения заключается в том, что при дефектоскопии последовательно используется два типа зондирующих акустических волн: продольные, распространяющиеся вдоль...
Тип: Изобретение
Номер охранного документа: 0002655983
Дата охранного документа: 30.05.2018
05.07.2018
№218.016.6bf5

Способ производства сжиженного природного газа

Изобретение относится к газоперерабатывающей отрасли промышленности. Посредством фильтра проводят очистку природного газа от механических примесей и капельной жидкости. Затем в мембранном блоке проводят предварительную осушку газа. Пермеат направляют в трубопровод низкого давления. Газ после...
Тип: Изобретение
Номер охранного документа: 0002659870
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6d27

Способ исследования геометрических параметров каверны подземного хранилища газа

Изобретение относится к метрологии, в частности к устройствам для контроля формы и размеров подземных хранилищ газа. Способ исследования геометрических параметров каверны подземного хранилища газа с установленной в ней насосно-компрессорной трубой с помощью ультразвукового сканирующего...
Тип: Изобретение
Номер охранного документа: 0002660307
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6e13

Способ определения формы и размеров каверны подземных хранилищ газа, создаваемых в отложениях каменной соли, и звуколокатор для реализации способа

Изобретения относятся к метрологии, в частности к средствам контроля формы и размеров подземных хранилищ газа. Звуколокатор содержит узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей. Центральная часть выполнена с...
Тип: Изобретение
Номер охранного документа: 0002660400
Дата охранного документа: 06.07.2018
09.08.2018
№218.016.79ef

Битумно-полимерная грунтовка

Изобретение относится к составам битумно-полимерных грунтовок для защиты от коррозии стальных трубопроводов, металлических резервуаров и нефтехранилищ промышленно-гражданского строительства. Битумно-полимерная грунтовка содержит мастику битумно-полимерную, фенолформальдегидную смолу,...
Тип: Изобретение
Номер охранного документа: 0002663134
Дата охранного документа: 01.08.2018
14.11.2018
№218.016.9d13

Способ комплексной переработки остатка атмосферной дистилляции газового конденсата и установка для его осуществления

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть...
Тип: Изобретение
Номер охранного документа: 0002672254
Дата охранного документа: 13.11.2018
07.12.2018
№218.016.a458

Способ гидроконверсии остатка атмосферной дистилляции газового конденсата

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В...
Тип: Изобретение
Номер охранного документа: 0002674160
Дата охранного документа: 05.12.2018
09.12.2018
№218.016.a52f

Буферная жидкость

Изобретение относится к области крепления скважин, а именно к буферным жидкостям для очистки скважин. Технический результат - получение стабильной утяжеленной буферной жидкости на углеводородной основе, обладающей высокой моющей способностью и пониженным показателем фильтрации, позволяющей...
Тип: Изобретение
Номер охранного документа: 0002674348
Дата охранного документа: 07.12.2018
Показаны записи 1-2 из 2.
05.10.2019
№219.017.d28a

Способ термошахтной разработки месторождения высоковязкой нефти по усовершенствованной одногоризонтной системе со скважинами длиной до 800 метров

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежей высоковязкой нефти или битумов. Технический результат - повышение эффективности вытеснения высоковязкой нефти в отдаленных от буровой галереи участках разрабатываемого блока путем равномерного...
Тип: Изобретение
Номер охранного документа: 0002702040
Дата охранного документа: 03.10.2019
24.07.2020
№220.018.37f3

Способ определения степени нарушения эвакуаторной функции желудка у больных с рубцово-язвенным пилородуоденальным стенозом

Изобретение относится к области медицины, а именно к абдоминальной хирургии и может быть использовано для определения степени нарушения эвакуаторной функции желудка у больных с рубцово-язвенным пилородуоденальным стенозом. Проводят суточный интрагастральный рН-мониторинг. Устанавливают...
Тип: Изобретение
Номер охранного документа: 0002727687
Дата охранного документа: 22.07.2020
+ добавить свой РИД