×
22.05.2023
223.018.6b7a

Результат интеллектуальной деятельности: Комплекс для моделирования кольматации и декольматации призабойной зоны скважины

Вид РИД

Изобретение

№ охранного документа
0002795739
Дата охранного документа
11.05.2023
Аннотация: Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для моделирования процессов кольматации и декольматации призабойной зоны скважины в лабораторных условиях. Заявлен комплекс для моделирования кольматации и декольматации призабойной зоны скважины, который включает линию обжима керна, манометр, физическую модель призабойной зоны скважины, стойку физической модели призабойной зоны скважины, лабораторный насос. При этом комплекс дополнительно оснащен головкой-излучателем физической модели призабойной зоны скважины, содержащей фильтрационный канал для подвода рабочей жидкости и ультразвуковой излучатель, головкой-приемником физической модели призабойной зоны скважины, содержащей ультразвуковой приемник, поршневыми контейнерами с промывочной жидкостью, поршневым контейнером с разбавленной кислотой, поршневым контейнером с кислотой, поршневым контейнером большого объема, ловушкой жидкости и твердой фазы, источником газа, лабораторным газометром, трубной обвязкой, включающей линию подачи газа, регулирующую линию подачи газа, линию высокого давления, линию подачи рабочих жидкостей, продувочную линию. Техническим результатом изобретения является увеличение вариативности возможных типов воздействия на керновый материал. 1 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для моделирования процессов кольматации и декольматации призабойной зоны скважины в лабораторных условиях.

Известен стенд для исследования процессов фильтрации углеводородных флюидов [Патент РФ №72347, G09B 23/06 (2006.01), опубл. 10.04.2008, бюл. №10], включающий модель пласта, помещенную в термостатирующий блок, датчики давления и температуры, систему заполнения исследуемыми газами и жидкостями, блок создания рабочего давления и блок разделительных цилиндров, регулятор давления, газовый счетчик, вакуумный насос, систему регулирования и контроля параметров процессов фильтрации, детонационную камеру сгорания для исследования результатов теплового и ударно-волнового воздействия на модели нефтяных и газовых пластов.

Известен стенд для исследования волнового резонансного воздействия на газоконденсатный пласт [Патент РФ №95425, G09B 23/06 (2006.01), опубл. 27.06.2010, бюл. №18], включающий модель пласта, помещенную в термостатирующий блок, датчики давления и температуры, систему заполнения исследуемыми газами и жидкостями, блок создания рабочего давления и блок разделительных цилиндров, регулятор давления, газовый счетчик, вакуумный насос, систему регулирования и контроля параметров процессов фильтрации и генератор высокого давления, который обеспечивает изменение во времени давления на выходе экспериментального участка по заданному закону и дает возможность регулировать это давление по частоте и амплитуде.

Недостатком приведенных аналогов является отсутствие возможности моделирования процессов кольматации и декольматации призабойной зоны скважины, в частности ультразвуковым и сонохимическим воздействием.

Наиболее близким по технической сущности, выбранным в качестве прототипа, является стенд для создания волнового воздействия на керновый материал коллекторов нефтегазоконденсатных месторождений [Патент РФ №139629, G09B 25/00 (2006.01), опубл. 20.04.2014, бюл. №11], включающий модель пласта, нагревательную ленту, поверхностную теплоизоляцию, автоматический двухплунжерный насос высокого давления, рекомбинатор, соединенный с двухплунжерным насосом высокого давления, термодатчик, датчики перепада давления на входе и на выходе, датчик горного давления. При этом модель пласта представляет собой образцы керна в цилиндрической манжете, содержащей приемник для определения параметров волнового воздействия, размещенной в цилиндрическом корпусе камеры гидрообжима, присоединенной на входе с помощью соединительной пластины к излучателю, соединенному с генератором, при этом значения создаваемых давлений и температуры контролируются через связь датчиков перепада давления на выходе и входе, датчика горного давления, термодатчика с аналого-цифровым преобразователем, управляемых с помощью персональной электронно-вычислительной машины в автоматическом режиме.

Недостатком прототипа является низкая вариативность возможных типов воздействия на керновый материал, в том числе отсутствие возможности сонохимического воздействия.

Задачей изобретения является создание комплекса для моделирования кольматации и декольматации призабойной зоны скважины, устраняющего недостатки аналогов и прототипа.

Техническим результатом изобретения является расширение арсенала технических средств для исследования кернового материала с увеличением вариативности возможных типов воздействия на керновый материал.

Поставленная задача и технический результат в комплексе для моделирования кольматации и декольматации призабойной зоны скважины, включающий физическую модель призабойной зоны скважины, выполненную с возможностью размещения в ней образца керна, подвергающегося обжиму линией обжима физической модели призабойной зоны скважины, соединенной с манометром, лабораторный насос, причем физическая модель призабойной зоны скважины установлена на стойках, решается тем, что комплекс дополнительно оснащен головкой-излучателем физической модели призабойной зоны скважины, содержащей фильтрационный канал для подвода рабочей жидкости и ультразвуковой излучатель, установленной на одном конце физической модели призабойной зоны скважины, головкой-приемником физической модели призабойной зоны скважины, содержащей ультразвуковой приемник, установленной на другом конце физической модели призабойной зоны скважины, поршневыми контейнерами с промывочной жидкостью, поршневым контейнером с разбавленной кислотой, поршневым контейнером с кислотой, соединенными посредством линии подачи рабочих жидкостей с головкой-излучателем физической модели призабойной зоны скважины, а также с линией высокого давления, поршневым контейнером большого объема, установленным в паре с лабораторным насосом, связанным с линией высокого давления, ловушкой жидкости и твердой фазы и лабораторным газометром, соединенными продувочной линией с замерным узлом, источником газа, связанным с линией подачи газа и регулирующей линией подачи газа.

Комплекс для моделирования кольматации и декольматации призабойной зоны скважины поясняется с помощью фиг., где представлено схематическое изображение комплекса для моделирования кольматации и декольматации призабойной зоны скважины.

Комплекс для моделирования кольматации и декольматации призабойной зоны скважины состоит из физической модели призабойной зоны скважины 3, включающей сбрасывающий кран 1 для приема рабочих жидкостей (промывочные жидкости, разбавленная кислота, кислота), запорное устройство 2 для отсекания физической модели призабойной зоны скважины 3, головку-излучатель 13, содержащую ультразвуковой излучатель (на фиг. не показан) и фильтрационный канал (на фиг. не показан), в качестве прибора контроля за давлением установлен манометр 5, давление обжима образца керна 14 поступает через линию обжима керна 4, а вся конструкция установлена на стойки 6. Посредством линии подачи газа 16 и регулирующей линии подачи газа 22, физическая модель призабойной зоны скважины 3 соединена с источником газа 21 любым доступным и безопасным способом (на фиг. не показан). Рабочие жидкости, такие как промывочная из поршневых контейнеров 8, 11, разбавленная кислота из поршневого контейнера 9, а также кислота из поршневого контейнера 10 подаются в головку-приемник 15, содержащую приемник волнового воздействия (на фиг. не показано), физическую модель призабойной зоны скважины 3, посредством линии подачи рабочих жидкостей 12, соединенной с поршневыми контейнерами 8, 9, 10, 11 и головкой-приемником 15 любым доступным и безопасным способом (на фиг. не показан), через выход на замерный узел 7. Поршневой контейнер большого объема 20 установлен в паре с лабораторным насосом 19 с целью создания расчетного давления масла и его подачи к поршневым контейнерам 8, 9, 10, 11. При этом взаимодействие поршневого контейнера большого объема 20, лабораторного насоса 19 и поршневых контейнеров 8, 9, 10, 11 осуществляется через линию высокого давления 23. Соединение контейнера большого объема 20, лабораторного насоса 19, поршневых контейнеров 8, 9, 10, 11 и линии высокого давления 23 может быть реализовано любым доступным и безопасным способом (на фиг. не показан). В схеме также предусмотрена продувочная линия 24, соединенная любым доступным и безопасным способом (на фиг. не показан) с лабораторным газометром 17, ловушкой 18 и замерным узлом 7. Лабораторный газометр 17 фиксирует объем продуваемого газа, а ловушка 18 предохраняет лабораторный газометр 17 от возможного попадания твердой и жидкой фазы.

Заявленный комплекс работает следующим образом.

В физическую модель призабойной зоны скважины 3 устанавливают заранее подготовленный образец керна 14. Лабораторные насосы 19 создают необходимое давление масла и посредством линии высокого давления 23 нагнетают его в контейнер большого объема 20. Оттуда давление воздействует на поршневые контейнеры 8, 9, 10, 11 и в зависимости от технического задания происходит закачка рабочих жидкостей (промывочные жидкости, разбавленная кислота, кислота) через линию подачи рабочих жидкостей 12 в физическую модель призабойной зоны скважины 3, посредством выхода на замерный узел 7. Контроль за давлением и режимом осуществляется манометром 5. Далее производится несколько циклов воздействия на образец керна 14, в зависимости от фазы экспериментальных исследований. Помимо воздействия рабочими жидкостями, через фильтрационный канал (на фиг. не показан) головки-излучателя 13 физической модели призабойной зоны скважины 3 также происходит и волновое воздействие ультразвуковым излучателем (на фиг. не показан), размещенным в головке-излучателе 13 физической модели призабойной зоны скважины 3. Регистрация амплитуды, а также результатов волнового воздействия, осуществляется приемником волнового воздействия (на фиг. не показан), размещенным в головке-приемнике 15 физической модели призабойной зоны скважины 3. По окончании воздействия происходит продувка физической модели призабойной зоны скважины 3 с помощью источника газа 21, который представляет собой стальной баллон высокого давления, оснащенный регулируемым редуктором (на фиг. не показан), через регулирующую линию подачи газа 22, линию подачи газа 16 и продувочную линию 24. Объем продуваемого газа фиксируется лабораторными газометрами 17, а после этот объем используется для расчета проницаемости горной породы, его изменение показывает эффективность воздействия. Для предотвращения загрязнения лабораторных газометров 17 в схеме предусмотрены ловушки жидкой и твердой фазы 18.

Применение в конструкции комплекса головки-излучателя, включающей фильтрационный канал для подвода рабочей жидкости и ультразвуковой излучатель, головки-приемника, включающей ультразвуковой приемник, поршневых контейнеров с промывочной жидкостью, поршневого контейнера с разбавленной кислотой, поршневого контейнера с кислотой, поршневого контейнера большого объема, ловушки жидкости и твердой фазы, источника газа, лабораторного газометра, а также трубной комплексной обвязки, представленной линией подачи газа, регулирующей линией подачи газа, линией высокого давления, линией подачи рабочих жидкостей, продувочной линией, обеспечивает возможность реализации моделирования процессов кольматации и декольматации призабойной зоны скважины, как ультразвуковым, так и сонохимическим методом, в результате чего увеличивается вариативность возможных типов воздействия на керновый материал.

Достигается комплексное воздействие на керновый материал в процессе лабораторного моделирования воздействия на призабойную зону скважины, сокращаются временные затраты, за счет возможности поэтапного воздействия на призабойную зону скважины как ультразвуковым, так и сонохимическим методом в рамках единого лабораторного комплекса. Минимизируются внешние воздействия, соблюдается идентичность условий эксперимента за счет отсутствия необходимости замены и/или дополнения конструктивных элементов комплекса, позволяющих выполнять различные виды моделирования, в результате чего повышается точность и достоверность результатов моделирования.

Комплекс для моделирования кольматации и декольматации призабойной зоны скважины, включающий физическую модель призабойной зоны скважины, выполненную с возможностью размещения в ней образца керна, подвергающегося обжиму линией обжима физической модели призабойной зоны скважины, соединенной с манометром, лабораторный насос, причем физическая модель призабойной зоны скважины установлена на стойках, отличающийся тем, что комплекс дополнительно оснащен головкой-излучателем физической модели призабойной зоны скважины, содержащей фильтрационный канал для подвода рабочей жидкости и ультразвуковой излучатель, установленный на одном конце физической модели призабойной зоны скважины, головкой-приемником физической модели призабойной зоны скважины, содержащей ультразвуковой приемник, установленный на другом конце физической модели призабойной зоны скважины, поршневыми контейнерами с промывочной жидкостью, поршневым контейнером с разбавленной кислотой, поршневым контейнером с кислотой, соединенными посредством линии подачи рабочих жидкостей с головкой-излучателем физической модели призабойной зоны скважины, а также с линией высокого давления, поршневым контейнером большого объема, установленным в паре с лабораторным насосом, связанным с линией высокого давления, ловушкой жидкости и твердой фазы и лабораторным газометром, соединенными продувочной линией с замерным узлом, источником газа, связанным с линией подачи газа и регулирующей линией подачи газа.
Комплекс для моделирования кольматации и декольматации призабойной зоны скважины
Комплекс для моделирования кольматации и декольматации призабойной зоны скважины
Источник поступления информации: Роспатент

Показаны записи 91-100 из 100.
11.07.2020
№220.018.3177

Способ заканчивания строительства эксплуатационной скважины с горизонтальным окончанием ствола

Изобретение относится к нефтяной и газовой промышленности, а именно к разработке нефтяных, газовых и газоконденсатных месторождений. Способ включает спуск и установку в горизонтальное окончание ствола нецементируемого хвостовика-фильтра с разобщающими пакерами, портами многостадийного...
Тип: Изобретение
Номер охранного документа: 0002726096
Дата охранного документа: 09.07.2020
11.07.2020
№220.018.31ab

Способ проведения обработки газовых скважин подземных хранилищ газа

Способ проведения обработки газовых скважин подземных хранилищ газа относится к области газовой промышленности. В заявленном способе на первом этапе в колонну насосно-компрессорных труб закачивают технологическую жидкость, приготовленную на основе водного раствора соляной кислоты, для создания...
Тип: Изобретение
Номер охранного документа: 0002726089
Дата охранного документа: 09.07.2020
31.07.2020
№220.018.39a6

Штамм methylococcus capsulatus вкпм в-13479 - продуцент микробной белковой массы, устойчивый к агрессивной среде

Изобретение относится к микробиологической промышленности и может быть использовано для получения микробной белковой массы. Штамм метанокисляющих бактерий Methylococcus capsulatus ЛБТИ 028 обладает способностью продуцировать микробную белковую массу. Штамм депонирован во Всероссийской...
Тип: Изобретение
Номер охранного документа: 0002728345
Дата охранного документа: 29.07.2020
12.04.2023
№223.018.45c2

Способ оценки выноса пропанта и устройство для сбора пропанта

Использование: для исследования выноса пропанта пластовым флюидом из трещины. Сущность изобретения заключается в том, что в ячейке, заполненной пропантом моделируют термобарические условия трещины и осуществляют несколько циклов прокачки через ячейку жидкости, имитирующей по своему составу...
Тип: Изобретение
Номер охранного документа: 0002790813
Дата охранного документа: 28.02.2023
21.04.2023
№223.018.5029

Способ изоляции водопритоков в газовых скважинах с субгоризонтальным окончанием ствола

Заявлен способ изоляции водопритоков в газовых скважинах с субгоризонтальным окончанием ствола. Техническим результатом является повышение эффективности изоляции водопритоков при максимально возможном сохранении фильтрационно-емкостных свойств призабойной зоны эксплуатационного объекта и...
Тип: Изобретение
Номер охранного документа: 0002794105
Дата охранного документа: 11.04.2023
21.04.2023
№223.018.5045

Пористый композитный адсорбент для селективного разделения газов и способ его получения

Группа изобретений относится к технологии получения адсорбентов и может найти применение для сорбции и селективного разделения газовых смесей, в том числе для очистки природного газа от углекислого газа, концентрирования выхлопного или промышленного углекислого газа. Представлен способ...
Тип: Изобретение
Номер охранного документа: 0002794181
Дата охранного документа: 12.04.2023
21.04.2023
№223.018.50b7

Безглинистый поликатионный буровой раствор

Изобретение относится к буровым растворам на водной основе, а именно к поликатионным буровым растворам, и может найти применение при бурении глинистых и продуктивных отложений и капитальном ремонте скважин с низкими пластовыми давлениями на нефтяных и газовых месторождениях. Технический...
Тип: Изобретение
Номер охранного документа: 0002794112
Дата охранного документа: 11.04.2023
22.04.2023
№223.018.50fd

Малоглинистый поликатионный буровой раствор

Изобретение относится к ингибирующим малоглинистым поликатионным буровым растворам на водной основе и может найти применение при бурении глинистых и продуктивных отложений и капитальном ремонте скважин, где существуют жесткие требования к экологии. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002794254
Дата охранного документа: 13.04.2023
22.04.2023
№223.018.510e

Блокирующий состав для ликвидации поглощений в продуктивных пластах при бурении скважин

Изобретение относится к нефтегазовой промышленности, а именно к составам для ликвидации поглощений в продуктивных пластах при бурении скважин. Блокирующий состав для ликвидации поглощений в продуктивных пластах при бурении скважин включает гелеобразователь – гуаровую камедь,...
Тип: Изобретение
Номер охранного документа: 0002794253
Дата охранного документа: 13.04.2023
24.05.2023
№223.018.6fc9

Способ получения 1,3,3,3-тетрафторпропилена

Изобретение относится к способу получения 1,3,3,3-тетрафторпропилена. Способ включает: (a) получение ССlСНСНВr при реакции СClВr с этиленом, отличающийся тем, что последовательно осуществляют: (b) дебромирование CClCHCHBr в этилцеллозольве или спирте с получением ССlСН=СН, (h) хлорирование...
Тип: Изобретение
Номер охранного документа: 0002795964
Дата охранного документа: 15.05.2023
Показаны записи 1-2 из 2.
05.10.2019
№219.017.d28a

Способ термошахтной разработки месторождения высоковязкой нефти по усовершенствованной одногоризонтной системе со скважинами длиной до 800 метров

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежей высоковязкой нефти или битумов. Технический результат - повышение эффективности вытеснения высоковязкой нефти в отдаленных от буровой галереи участках разрабатываемого блока путем равномерного...
Тип: Изобретение
Номер охранного документа: 0002702040
Дата охранного документа: 03.10.2019
24.07.2020
№220.018.37f3

Способ определения степени нарушения эвакуаторной функции желудка у больных с рубцово-язвенным пилородуоденальным стенозом

Изобретение относится к области медицины, а именно к абдоминальной хирургии и может быть использовано для определения степени нарушения эвакуаторной функции желудка у больных с рубцово-язвенным пилородуоденальным стенозом. Проводят суточный интрагастральный рН-мониторинг. Устанавливают...
Тип: Изобретение
Номер охранного документа: 0002727687
Дата охранного документа: 22.07.2020
+ добавить свой РИД