×
22.05.2023
223.018.6b46

Результат интеллектуальной деятельности: ЭНЕРГОНЕЗАВИСИМАЯ ТРОИЧНАЯ ЯЧЕЙКА ПАМЯТИ НА ОСНОВЕ УГЛЕРОДНОГО НАНОКОМПОЗИТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области твердотельной наноэлектроники и может быть использовано для создания энергонезависимых наноразмерных элементов памяти троичных ЭВМ, которые могут найти применение в вычислительной технике. В ячейке памяти на основе углеродного нанокомпозита, содержащего нанотрубку с киральностью (10, 10), в полости которой у открытых краёв нанотрубки расположены триммеры фуллеренов, химически соединенные друг с другом и нанотрубкой, эндоэдральный комплекс К@C60, согласно изобретению, нанотрубка выполнена в виде Т-образного бесшовного элемента, имеющего основание и плечи, ячейка содержит дополнительные триммеры фуллеренов, химически соединенные друг с другом и нанотрубкой и расположенные в полости основания Т-образного элемента у его открытого края, ячейка содержит оксидное кольцо из 60 атомов кислорода и оксидное кольцо из 30 атомов кислорода, которые расположены с внешней стороны нанотрубки на плечах Т-образного элемента, при этом эндоэдральный комплекс К@C60 расположен в полости основания Т-образного элемента. Техническим результатом изобретения является расширение функциональных возможностей ячейки памяти до трёх логических состояний. 3 ил., 2 табл.

Изобретение относится к области твердотельной наноэлектроники, и может быть использовано для создания энергонезависимых наноразмерных элементов памяти троичных ЭВМ, которые могут найти широкое применение в вычислительной технике.

Известна энергонезависимая ячейка памяти (см. Young-Kyun Kwon, David Tománek, Sumio Iijima “Bucky Shuttle” Memory Device: Synthetic Approach and Molecular Dynamics Simulations/ PHYSICAL REVIEW LETTERS. – 1999. – V.82. - № 7. – Р. 1470-1473// doi:10.1103/PhysRevLett.82.1470), содержащая нанотрубку, в полости которой расположены фуллерены, такие как С60, эндоэдральный комплекс К@C60.

Недостатком данной ячейки является возможность реализации только двух логических состояний, не рассмотрено распределение заряда на эндоэдральном комплексе и распределение энергии Ван-дер-Ваальса внутри полости ячейки.

Известен элемент памяти на основе вертикально ориентированных углеродных нанотрубок (см. патент РФ № 160325 по кл. МПК G11B9/04, опубл. 10.03.2016), состоящий из подложки со сформированными на ней нижними электродами, вертикально ориентированными углеродными нанотрубками, синтезированными методом плазмохимического осаждения из газовой фазы и выступающими в качестве функционального элемента памяти, верхних контактных электродов. Между вертикально ориентированными углеродными нанотрубками и верхними электродами с помощью диэлектрических упоров формируется туннельный зазор. Элемент памяти позволяет повысить быстродействие процессов записи и стирания информации до 10 пс, снизить сопротивление контакта между вертикально ориентированной углеродной нанотрубкой и верхним контактным электродом за счет формирования туннельного контакта между ними, и, как следствие, уменьшить значение напряжения переключения между низкоомным и высокоомным состояниями и снизить энергопотребление.

Недостатком этой ячейки памяти является возможность реализации только двух логических состояний.

Наиболее близкой к заявляемой является углеродная наноструктура (см. патент РФ № 2725899 по кл. МПК H01L31/0352, опубл. 07.07.2020), представляющая собой нанотрубку с киральностью (10, 10), в полости которой у краёв нанотрубки расположены цепочки из трех фуллеренов С60, химически соединенных друг с другом и нанотрубкой. Между цепочками из трех фуллеренов внутри нанотрубки также находится свободный фуллерен С60, который может нести положительный заряд и перемещаться. Структура также содержит эндоэдральный комплекс К@Cх, где x=36 или 60 или 80, находящийся в полости одностенной углеродной нанотрубки c триммером фуллерена С60. Химически связанные друг с другом и трубкой три фуллерена С60 создают для свободного фуллерена потенциальные ямы, из которых он не может выйти без внешней вынуждающей силы, но внутри которых он может колебаться.

Недостатком прототипа является наличие только двух потенциальных ям, что не позволяет реализовать наличие трёх состояний ячейки, не рассмотрено распределение энергии Ван-дер-Ваальса внутри полости структуры, время перехода между потенциальными ямами.

Технической проблемой заявляемого изобретения является создание атомистической модели троичной энергонезависимой ячейки памяти на основе углеродных гибридных композитов.

Техническим результатом является расширение функциональных возможностей ячейки памяти до трёх логических состояний.

Для решения поставленной проблемы и достижения заявляемого результата в ячейке памяти на основе углеродного нанокомпозита, содержащего нанотрубку с киральностью (10, 10), в полости которой у открытых краёв нанотрубки расположены триммеры фуллеренов, химически соединенные друг с другом и нанотрубкой, эндоэдральный комплекс К@C60, согласно изобретению, нанотрубка выполнена в виде Т-образного бесшовного элемента, имеющего основание и плечи, ячейка содержит дополнительные триммеры фуллеренов, химически соединенные друг с другом и нанотрубкой и расположенные в полости основания Т-образного элемента у его открытого края, ячейка содержит оксидное кольцо из 60 атомов кислорода и оксидное кольцо из 30 атомов кислорода, которые расположены с внешней стороны нанотрубки на плечах Т-образного элемента, при этом эндоэдральный комплекс К@C60 расположен в полости основания Т-образного элемента.

Изобретение поясняется иллюстрациями, где представлено:

- на фиг. 1 – схема заявляемой троичной ячейки памяти,

- на фиг. 2 – график распределения энергии взаимодействия Ван-дер-Ваальса между эндоэдральным комплексом и остальной структурой ячейки при перемещении эндоэдрального комплекса внутри полости структуры,

- на фиг. 3 – расположения эндоэдрального комплекса в потенциальных ямах.

Позициями на фиг.1 и 3 обозначено:

1 – нанотрубка в виде Т-образного бесшовного углеродного элемента,

2 – триммеры фуллеренов С60,

3 – эндоэдральный комплекс K@C60,

4 – большое оксидное кольцо из 60 атомов кислорода,

5 – малое оксидное кольцо из 30 атомов кислорода,

6 – расположение эндоэдрального комплекса, соответствующее положению «0» (заряд комплекса равен 0.344е),

7 - расположение эндоэдрального комплекса, соответствующее положению «1» (заряд комплекса равен -0.394е),

8 - расположение эндоэдрального комплекса, соответствующее положению «2» (заряд комплекса равен -1.148е),

9 - зона потенциальной ямы, соответствующая положению фуллерена в
состоянии "2", глубина потенциальной ямы 1.913 эВ,

10 - зона потенциальной ямы, соответствующая положению фуллерена в
состоянии "0", глубина потенциальной ямы 1.911 эВ,

11 - зона потенциальной ямы, соответствующая положению фуллерена в
состоянии "1", глубина потенциальной ямы 1. 929 эВ.

Ячейка памяти представляет собой нанотрубку 1 в виде Т-образного бесшовного углеродного элемента киральностью (10, 10), имеющего плечи и основание. В полости нанотрубки 1 у краёв (плеч и основания) расположены триммеры фуллеренов, химически соединенные друг с другом. Ячейка содержит эндоэдральный комплекс K@C60 3, большое оксидное кольцо 4 из 60 атомов кислорода и малое оксидное кольцо 5 из 30 атомов кислорода. Оксидные кольца 4 и 5 расположены с внешней стороны нанотрубки на плечах Т-образного элемента 1, а эндоэдральный комплекс 3 расположен в полости основания Т-образного элемента 1.

Нанотрубка (Т-образный элемент) 1 имеет диаметр 1.4 нм, длину плеч 11 нм, длину основания - 6 нм.

Большое оксидное кольцо из 60 атомов кислорода представляет собой атомы кислорода, находящиеся на внешней стороне плеча структуры и химически связанные с атомами углерода Т-образного элемента.

Малое оксидное кольцо из 30 атомов кислорода представляет собой атомы кислорода, находящиеся на внешней стороне плеча структуры и химически связанные с атомами углерода Т-образного элемента.

Малое и большое кольца располагаются на противоположных плечах.

Устройство работает следующим образом.

Режим хранения информации: положение в каждой потенциальной яме соответствует своему значению трита (0,1,2). Положение комплекса определяется уровнем заряда на эндоэдральном комплексе и определяется степенью оксидированности края: 0.344е для положения «0», -0.394е для положения «1», -1.148е для положения «2». Данные значения заряда были рассчитаны для структуры в рамках метода SCC DFTB (см. DFTB+, a software package for efficient approximate density functional theory based atomistic
simulations//J. Chem. Phys. 152, 124101. – 2020).

Средствами методов моделирования молекулярной динамики с помощью программно-вычислительного комплекса (ПВК) KVAZAR (см. http:// nanokvazar.ru / razrabatyvaemaia-produktsiia / programmno-vychislitelnyi-kompleks-pvk-kvazar) было установлено, что в отсутствии внешнего воздействия эндоэдральный комплекс может бесконечно долго находиться в потенциальной яме и не менять своего положения, что обеспечивает стабильность и энергонезависимость ячейки.

Режим смены состояния: смена состояния ячейки производится воздействием внешнего электрического поля. Условия, необходимые для перемещения фуллерена между ямами (между положениями «0», «1» и «2»), такие как сила (В/нм) и направление электрического поля в относительных координатах (X; Y; Z), указаны в таблице 1. Вследствие удовлетворения условиям, эндоэдральный комплекс покидает потенциальную яму, в которой находится, и переходит в другую потенциальную яму, отвечающую за другое состояние ячейки. Частота электрического поля 0.457 ТГц. Ориентация системы координат указана на фиг. 3. При этом каждое расположение соответствует определённому состоянию ячейки.

Таблица 1.

Переход Сила электрического поля Направление вектора
0-1 1.65 (0;1;-0.75)
0-2 1.65 (0;1;0.75)
1-0 1.65 (0;-0.75;1)
1-2 1.6 (0;0;1)
2-0 1.65 (0;-0.75;-1
2-1 1.6 (0;0;-1)

В таблице 2 представлено время (пс), необходимое для перемещения комплекса между положениями «0», «1» и «2».

Таблица 2.

Переход Время
0-1 13.5
0-2 13.5
1-0 13.5
1-2 10.6
2-0 13.5
2-1 10.6

График распределения энергии взаимодействия Ван-дер-Ваальса между эндоэдральным комплексом и остальной структурой ячейки при перемещении эндоэдрального комплекса внутри полости структуры, представленный на фиг. 2, был получен в программном пакете RING - Свидетельство о государственной регистрации программы для ЭВМ №2010612881 "Программа для моделирования наноструктур (Ring)". Зарегистрировано в реестре программ для ЭВМ 28.04.2010 г. Авторы: О.Е. Глухова, О.А. Терентьев. Расстояния на графике указаны в ангстремах.

Предлагаемая ячейка памяти обладает тремя стабильными состояниями, является энергонезависимой.

Ячейка памяти на основе углеродного нанокомпозита, содержащего нанотрубку с киральностью (10, 10), в полости которой у открытых краёв нанотрубки расположены триммеры фуллеренов, химически соединенные друг с другом и нанотрубкой, эндоэдральный комплекс К@C60, отличающаяся тем, что нанотрубка выполнена в виде Т-образного бесшовного элемента, имеющего основание и плечи, ячейка содержит дополнительные триммеры фуллеренов, химически соединенные друг с другом и нанотрубкой и расположенные в полости основания Т-образного элемента у его открытого края, ячейка содержит оксидное кольцо из 60 атомов кислорода и оксидное кольцо из 30 атомов кислорода, которые расположены с внешней стороны нанотрубки на плечах Т-образного элемента, при этом эндоэдральный комплекс К@C60 расположен в полости основания Т-образного элемента.
ЭНЕРГОНЕЗАВИСИМАЯ ТРОИЧНАЯ ЯЧЕЙКА ПАМЯТИ НА ОСНОВЕ УГЛЕРОДНОГО НАНОКОМПОЗИТА
ЭНЕРГОНЕЗАВИСИМАЯ ТРОИЧНАЯ ЯЧЕЙКА ПАМЯТИ НА ОСНОВЕ УГЛЕРОДНОГО НАНОКОМПОЗИТА
ЭНЕРГОНЕЗАВИСИМАЯ ТРОИЧНАЯ ЯЧЕЙКА ПАМЯТИ НА ОСНОВЕ УГЛЕРОДНОГО НАНОКОМПОЗИТА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 90.
07.03.2020
№220.018.0a75

Способ количественного определения новокаина

Изобретение относится к аналитической химии, в частности к количественному определению новокаина. Предложен способ количественного определения новокаина, включающий обработку анализируемой пробы растворами органического реагента и додецилсульфата натрия, добавление цитратного буферного...
Тип: Изобретение
Номер охранного документа: 0002715997
Дата охранного документа: 05.03.2020
15.03.2020
№220.018.0c62

Способ определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрической структуры

Изобретение относится к области контрольно-измерительной техники и предназначено для одновременного определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур в сверхвысокочастотном диапазоне, и может найти применение для...
Тип: Изобретение
Номер охранного документа: 0002716600
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e36

Направленный 3d ответвитель на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности. Техническая проблема изобретения заключается в создании 3D ответвителя СВЧ-мощности, обеспечивающего возможность...
Тип: Изобретение
Номер охранного документа: 0002717257
Дата охранного документа: 19.03.2020
15.04.2020
№220.018.14bf

Устройство для контролируемого получения пористых оксидов полупроводников in situ

Изобретение относится к области получения пористых анодных оксидов полупроводников и изучения полупроводниковых материалов в процессе их формирования (т.е. in situ). Техническая проблема заключается в возможности получения полупроводниковых наноструктурированных материалов с прогнозируемым...
Тип: Изобретение
Номер охранного документа: 0002718773
Дата охранного документа: 14.04.2020
06.07.2020
№220.018.3019

Способ синтеза апконверсионных частиц nayf:er,yb

Изобретение может быть использовано в биофизике, медицинской диагностике и терапии для преобразования инфракрасного излучения в видимое. Готовят водные растворы гексагидратов хлорида иттрия, хлорида иттербия, хлорида эрбия, а также цитрата натрия и фторида натрия. Полученные растворы...
Тип: Изобретение
Номер охранного документа: 0002725581
Дата охранного документа: 02.07.2020
07.07.2020
№220.018.3064

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к медицине. Способ бесконтактного измерения внутриглазного давления включает воздействие на глаз воздушным импульсом и освещение оптическим излучением, преобразование отражённого от глаза оптического излучения в напряжение, регистрацию зависимости напряжения от времени,...
Тип: Изобретение
Номер охранного документа: 0002725854
Дата охранного документа: 06.07.2020
09.07.2020
№220.018.30bc

Способ детектирования терагерцовых электромагнитных волн

Использование: для создания нанодетекторов терагерцовых электромагнитных волн. Сущность изобретения заключается в том, что способ детектирования терагерцового электромагнитного излучения включает направление потока излучения на преобразователь, регистрацию отклика, по которому судят о наличии...
Тип: Изобретение
Номер охранного документа: 0002725899
Дата охранного документа: 07.07.2020
24.07.2020
№220.018.3606

Способ получения наночастиц хитозана

Изобретение относится к области химии полимеров и может быть использовано для получения полимерных наночастиц из хитозана. Способ предусматривает смешивание хитозана с кислотой и получение целевого продукта. Используют порошок высокомолекулярного хитозана, в качестве кислоты используют порошок...
Тип: Изобретение
Номер охранного документа: 0002727360
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.371e

Оптически управляемый переключатель на магнитостатических волнах

Изобретение относится к области радиотехники СВЧ и касается оптически управляемого переключателя. Переключатель содержит управляющий источник света и волноводную структуру. Волноводная структура выполнена из пленки железо-иттриевого граната, расположенной на подложке галлий-гадолиниевого...
Тип: Изобретение
Номер охранного документа: 0002727293
Дата охранного документа: 21.07.2020
26.07.2020
№220.018.3881

Способ определения нитрит-ионов

Изобретение относится к аналитической химии, а именно к способу определения нитрит-ионов. Способ включает обработку анализируемой пробы растворами органических реагентов, один из которых на основе п-нитроанилина, а другой дифениламина, выделение из полученной реакционной смеси мицеллярной фазы...
Тип: Изобретение
Номер охранного документа: 0002727879
Дата охранного документа: 24.07.2020
Показаны записи 1-2 из 2.
10.04.2015
№216.013.38e4

Способ получения электромагнитного излучения гига- и терагерцового диапазона частот

Изобретение относится к нанотехнологиям, а именно к области физики твердого тела, и может быть использовано для создания приборов медицинской диагностики нового поколения, неразрушающего контроля материалов, сканирования багажа на транспорте, поиска взрывчатых веществ по их спектральному...
Тип: Изобретение
Номер охранного документа: 0002546052
Дата охранного документа: 10.04.2015
09.07.2020
№220.018.30bc

Способ детектирования терагерцовых электромагнитных волн

Использование: для создания нанодетекторов терагерцовых электромагнитных волн. Сущность изобретения заключается в том, что способ детектирования терагерцового электромагнитного излучения включает направление потока излучения на преобразователь, регистрацию отклика, по которому судят о наличии...
Тип: Изобретение
Номер охранного документа: 0002725899
Дата охранного документа: 07.07.2020
+ добавить свой РИД