×
21.05.2023
223.018.6837

Результат интеллектуальной деятельности: Способ оценки длины волокна заготовки при плоском деформированном состоянии

Вид РИД

Изобретение

Аннотация: Изобретение относится к области обработки металлов давлением, а именно к способу оценки длины волокна при плоском деформированном состоянии. Способ оценки длины волокна заготовки при плоском деформированном состоянии заключается в том, что осуществляют деформацию заготовки в рамках исследуемого процесса обработки металлов давлением. При этом фиксируют основные параметры исследуемого процесса: скорость перемещения и/или вращения деформирующего и вспомогательного инструмента, размеры деформирующего и вспомогательного инструмента, температуру заготовки перед деформацией, размеры заготовки перед деформацией. Затем проводят испытания на растяжение образцов из материала недеформированной заготовки. После этого осуществляют компьютерное моделирование исследуемого процесса обработки металлов давлением в вычислительное среде конечно-элементного анализа с использованием данных. Затем с помощью автоматизированного компьютерного проектирования производят необходимые измерения длины волокна заготовки при плоском деформированном состоянии. Технический результат - повышение точности прогнозирования формоизменения и выявление его особенностей благодаря количественной оценке длины волокна заготовки и возможности оценки его формы на любой стадии исследуемого процесса обработки металлов давлением. 6 ил.

Изобретение относится к области обработки металлов давлением, а именно к способу оценки длины волокна при плоском деформированном состоянии.

Известен способ оценки изменения формы волокна при винтовой прокатке (Восканьянц А.А., Иванов А.В. Моделирование процесса поперечно-винтовой прокатки на основе эйлерова описания движения сплошной среды. Машиностроение и компьютерные технологии, №1, 2009 http://technomag.edu.ru/doc/113356.html). Неизвестно, возможно ли данным способом оценить длину волокна в заготовке в интересующий момент времени.

Известен способ оценки изменения формы волокна при штамповке (Н.В. Биба, С.А. Стебунов, Ю.А. Гладков, П.С. Мордвинцев. QForm - универсальная и эффективная программа для моделирования ковки и штамповки. Мир металла, январь-февраль 2011, с. 28-31. https://qform3d.ru/publications?page=1). Способ позволяет качественно оценить изменение формы волокон в процессе штамповки, однако не позволяет оценить длину волокна заготовки в интересующий момент времени.

Известен способ отображения изменения формы волокна заготовки в процессе штамповки (Конечно-элементное моделирование технологических процессов ковки и объемной штамповки: учебное пособие/[А.В. Власов и др.]; под ред. А.В. Власова. - Москва: Издательство МГТУ им. Н.Э. Баумана, 2019 - 383, [1] с: ил., с. 308-309). Данный способ наиболее близок предлагаемому изобретению. Способ позволяет качественно оценить изменение формы волокон в процессе штамповки, однако не позволяет оценить длину волокна заготовки в интересующий момент времени.

Техническим результатом является повышение эффективности существующих и разработки новых технологий обработки металлов давлением за счет повышения точности прогнозирования формоизменения и выявлении его особенностей благодаря количественной оценке длины волокна заготовки и возможности оценки его формы на любой стадии исследуемого процесса обработки металлов давлением.

Технический результат достигается тем, что сначала осуществляют деформацию заготовки в рамках исследуемого процесса обработки металлов давлением. При этом фиксируют основные параметры исследуемого процесса: скорость перемещения и/или вращения деформирующего и вспомогательного инструмента, размеры деформирующего и вспомогательного инструмента, температуру заготовки перед деформацией, размеры заготовки перед деформацией. Затем проводят испытания на растяжение образцов из материала недеформированной заготовки. После этого осуществляют компьютерное моделирование исследуемого процесса обработки металлов давлением в вычислительной среде конечно-элементного анализа с использованием данных о значениях основных параметров исследуемого процесса обработки металлов давлением и результатов испытаний на растяжение образцов из материала недеформированной заготовки. По окончании компьютерного моделирования исследуемого процесса обработки металлов давлением с помощью инструментария вычислительной среды конечно-элементного анализа в заготовке интересующее волокно выделяют линией и производят трассировку выбранного волокна за весь процесс формоизменения. В интересующий момент времени процесса деформации отображают контур заготовки и волокна. С помощью инструментария вычислительной среды конечно-элементного анализа сохраняют контур заготовки и волокна в файл в виде файла. Созданный файл открывают с помощью среды автоматизированного компьютерного проектирования. При открытии файла данных контура заготовки и волокна выбирают набор данных, соответствующих волокну. В результате открытия файла получают точки, последовательно соединенные прямыми линиями. С помощью инструментария среды автоматизированного компьютерного проектирования прямые линии удаляют, оставляя только точки. Через все точки проводят сплайн (сглаженную кривую) или несколько последовательно соединенных друг с другом сплайнов. Используя инструментарий среды автоматизированного компьютерного проектирования, определяют длину сплайна, если через точки проводили один сплайн, или суммарную длину сплайнов, если сплайнов было несколько. Полученное значение принимают за оценку длины волокна заготовки при плоском деформированном состоянии.

Технический результат достигается на примере оценки длины волокна заготовки при формовке на трехвалковой гибочной машине. Формовка трубной заготовки производилась на гибочной установке РВТ 25 в условиях научно-производственного центра кафедры ОМД НИТУ «МИСиС». На фиг.1 представлена схема расположения валков на установке РВТ 25: 1 - гибочный валок, 2,3 - опорные валки, 4 - листовая заготовка. Радиус гибочного валка составлял 137, 5 мм, радиус опорных валков составлял 97,5 мм. Для формовки использовали полосу из стали 20, толщиной 6 мм. В ходе гибки гибочный валок переместился вертикально вниз на величину 16 мм со скоростью 2 мм/с. Температура заготовки составляла 20°С. Провели испытания образцов из стали 20 на растяжение на испытательной машине Gleeble 3800 НИТУ «МИСиС». Испытания проводили при температуре 20°С при различных скоростях деформации: 0,01 с-1, 0,1 с-1, 1 с-1, 10 с-1, 100 с-1. На фиг.2 представлены графики изменения сопротивления деформации, полученные по результатам испытаний образцов из стали 20 на растяжение при температуре 20°С при различных скоростях деформации: 5 - 0,01 с-1, 6 - 0,1 с-1, 7 - 1 с-1, 8 - 10 с-1, 9 - 100 с-1. Используя параметры исследуемого процесса формовки и результаты испытаний на растяжение провели компьютерное моделирование исследуемого процесса формовки с помощью вычислительной среды конечно-элементного анализа QForm. Для формовки использовали заготовку толщиной 6 мм и длиной 1000 мм. Моделирование осуществляли с использованием параметров инструмента гибочной установки РВТ 25. Перед началом моделирования в SolidWorks создали эскиз, содержащий контуры верхнего и нижнего валков в виде окружностей соответствующих радиусов, равных радиусам валков гибочной установки РВТ 25 (фиг.3). Радиус гибочного валка составлял 137,5 мм, радиус опорных валков - 97,5 мм. Расстояние между центрами опорных валков составляло 200 мм. Расстояние от левого края заготовки до центра гибочного валка составляло 125 мм. Также создали контур продольного сечения заготовки в виде прямоугольника со сторонами 6 и 1000 мм. Созданный эскиз сохранили в формате.dxf и загрузили в QForm (фиг.4): 1 - гибочный валок, 2,3 -опорные валки, 4 - заготовка. Материал заготовки задали сталь 20 из библиотеки материалов QForm. Перемещение гибочного валка по вертикали задали равным 2 мм/с.Условия трения для всех трех роликов задавали, выбрав закон трения Кулона в меню QForm, а также величины коэффициента трения Кулона равным 0,8. Моделировали процесс без расчета теплообмена между полосой и валками. Для заготовки задавали граничное условие в виде адаптации сетки конечных элементов. При этом соблюдалось условие, что максимальный размер элемента в заготовке не превышает 0,1 мм, и моделирование велось без переразбиения сетки в процессе расчета. Граничное условие адаптации сетки для заготовки выполнялось для всей заготовки в процессе моделирования. Для всех валков задали граничное условие в виде адаптации сетки конечных элементов. При этом максимальный размер элемента для валков ограничивался только на поверхности инструмента и не превышал 0,1 мм. Температуру заготовки задали равной 20°С. Критерием остановки расчета являлось конечное перемещение гибочного валка на 16 мм.

По окончании расчета выбрали первый шаг и на заготовке обозначили линией волокно, которое располагалось на равном расстоянии от верхней и нижней кромок заготовки (фиг.5). На фиг.3: 1 - гибочный валок, 2,3 - опорные валки, 4 - заготовка, 10 - волокно. С помощью инструментария QForm отобразили последний шаг расчета, левой кнопкой мыши выбрали заготовку, затем в меню QForm выбрали «Экспорт», затем «Экспорт в STL/DXF/XLS», сохранили контур заготовки и валок в формате «DXF». Полученный файл открыли в SolidWorks, импортировав его как двумерный эскиз. При импортировании в SolidWorks в меню слоев выбрали тот слой, который соответствовал волокну (фиг.6). Получили отображение волокна в виде последовательно соединенных прямых линий. На концы всех линий с помощью инструментария SolidSWorks нанесли точки, а затем прямые линии удалили. При этом в эскизе остались нанесенные точки. С помощью инструментария SolidWorks через точки провели последовательно соединенные сплайны, определили с помощью команды «Измерить» длину каждого сплайна. Все длины сложили и получили значение 1000,016 мм. Полученное значение приняли в качестве оценки длины волокна заготовки при плоском деформированном состоянии.

Способ оценки длины волокна заготовки при плоском деформированном состоянии, заключающийся в том, что сначала осуществляют деформацию заготовки в рамках исследуемого процесса обработки металлов давлением и фиксируют основные параметры исследуемого процесса: скорость перемещения и/или вращения деформирующего и вспомогательного инструмента, размеры деформирующего и вспомогательного инструмента, температуру заготовки перед деформацией, размеры заготовки перед деформацией, проводят испытания на растяжение образцов из материала недеформированной заготовки, осуществляют компьютерное моделирование исследуемого процесса обработки металлов давлением в вычислительное среде конечно-элементного анализа с использованием данных о значениях основных параметров исследуемого процесса обработки металлов давлением и результатов испытаний на растяжение образцов из материала недеформированной заготовки, выделение линией волокна в заготовке по результатам компьютерного моделирования, его трассировку за все время деформации, сохранение контуров заготовки и волокна в интересующий момент времени в файл, отличающийся тем, что файл с контуром заготовки и волокном открывают в среде автоматизированного компьютерного проектирования, при предварительном просмотре файла данных контура заготовки и волокна выбирают набор данных, соответствующих волокну, отображают выбранное на плоскости и получают набор точек, последовательно соединенных прямыми линиями, с помощью инструментария среды автоматизированного компьютерного проектирования удаляют прямые линии, соединяющие точки, оставляя только точки, через эти точки проводят сплайн или несколько сплайнов, с помощью инструментария среды автоматизированного компьютерного проектирования измеряют длину сплайна, если сплайнов несколько, то определяют длину каждого и суммируют полученные длины, величину длины сплайна, если он был один, или величину суммарной длины сплайнов, если их было несколько, принимают за оценку длины волокна заготовки при плоском деформированном состоянии.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 108.
20.07.2014
№216.012.e143

Способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях

Изобретение относится к способу получения шихты для композиционного материала на основе карбоната кальция - гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях. Заявленный способ включает получение шихты для спекания...
Тип: Изобретение
Номер охранного документа: 0002523453
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e5c8

Способ увеличения прочности цементов для медицины

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Описаны кальцийфосфатные цементные материалы, которые получают на основе порошков тетракальциевого фосфата и/или трикальцийфосфата. В качестве цементной жидкости...
Тип: Изобретение
Номер охранного документа: 0002524614
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.eaef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Способ включает измельчение концентрата и пирометаллургическое вскрытие концентрата в два этапа. На первом этапе проводят углетермическое восстановление натрия из концентрата путем испарения натрия при давлении p=10-50 Па,...
Тип: Изобретение
Номер охранного документа: 0002525951
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.0683

Способ получения порошковых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов системы железо-хром-кобальт. Шихту, содержащую порошки железа, хрома, кобальта, легирующие добавки и до 15 мас.% нанопорошков железа, хрома и кобальта, формуют с получением...
Тип: Изобретение
Номер охранного документа: 0002533068
Дата охранного документа: 20.11.2014
20.02.2015
№216.013.2ae6

Способ получения пористого керамического матрикса на основе карбоната кальция для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для пластической реконструкции поврежденных костных тканей. Описан способ пропитки пористых полимерных матриц жидким шликером на основе порошка карбоната кальция, содержащим спекающие добавки карбоната или карбонатов...
Тип: Изобретение
Номер охранного документа: 0002542439
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.46d6

Состав жидкости для получения пористых керамических образцов на основе фосфатов кальция для костной инженерии при 3d формовании и/или 3d печати

Изобретение относится к материалам, пригодным для метода 3D формования и/или 3D печати, и может быть использовано для получения формованных изделий на основе фосфатов кальция, применяемых в медицине для костной инженерии в качестве матриксов, обладающих биологической совместимостью и...
Тип: Изобретение
Номер охранного документа: 0002549638
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4c40

Способ получения оксида кобальта соо для производства твердых сплавов

Изобретение относится к гидрометаллургии цветных металлов, а именно к получению оксида кобальта CoO для производства твердых сплавов типа WC-Co. Оксид кобальта осаждают из азотнокислого раствора кобальтсодержащего сырья путем обработки в автоклаве гидроксидом аммония (NHOH) при температуре...
Тип: Изобретение
Номер охранного документа: 0002551034
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.5adf

Способ получения композиционного материала на основе фосфата кальция

Изобретение относится к области медицины и представляет собой способ получения композиционного материала на основе фосфата кальция, заключающийся в том, что получают частицы фосфата кальция в хитозановой матрице путем их осаждения in situ в растворе, содержащем высокомолекулярный хитозан и...
Тип: Изобретение
Номер охранного документа: 0002554804
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5ae6

Способ получения пористых хитозановых губок, содержащих фосфаты кальция, для заполнения костных дефектов

Изобретение относится к медицине. Описан способ получения композиционного материала на основе хитозана, содержащего аспарагиновую или глутаминовую аминокислоты в количестве от 2 до 5% мас., а также фосфаты кальция с соотношением Ca/P от 1,0 до 1,67. Способ заключается в барботировании через...
Тип: Изобретение
Номер охранного документа: 0002554811
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cff

Способ получения пористых керамических гранул на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для реконструктивно-пластических операций при поврежденных костных тканях. Описаны материалы на основе системы карбонат кальция - гидроксиапатит и/или каронатгидроксиапатит, содержащие от 20 до 80 масс. % карбоната...
Тип: Изобретение
Номер охранного документа: 0002555348
Дата охранного документа: 10.07.2015
Показаны записи 11-20 из 87.
20.02.2014
№216.012.a2be

Способ изоляции зон водопритока в скважине

Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции зон водопритока в скважине с применением кремнийорганических соединений, а также может использоваться для изоляции водопритока в добывающих скважинах. Способ изоляции зон водопритока в скважине включает...
Тип: Изобретение
Номер охранного документа: 0002507377
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.b16d

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав...
Тип: Изобретение
Номер охранного документа: 0002511136
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bc8e

Устройство для определения интервалов водопритока и их изоляции в открытых стволах многозабойных горизонтальных скважин

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для изоляции водопритоков в открытых стволах многозабойных горизонтальных скважин. Устройство содержит спускаемую в скважину колонну пустотелых герметичных труб и геофизический прибор для проведения геофизических...
Тип: Изобретение
Номер охранного документа: 0002514009
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c33c

Способ ремонта скважины с дефектным участком со смещением обсадной колонны

Изобретение относится к нефтегазодобывающей промышленности, а именно к выправлению смятых и смещенных обсадных колонн в скважине и восстановлению их герметичности. При исследовании дефектного участка определяют диаметр d внутреннего сужения в интервале смещения дефектного участка обсадной...
Тип: Изобретение
Номер охранного документа: 0002515739
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c6df

Способ ремонта скважины при изоляции заколонных перетоков

Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению крепления скважин при изоляции заколонных перетоков. Способ включает определение всей информации по дефектному участку обсадной колонны, его удаление. При наличии зумпфа не менее 5 м производят сборку...
Тип: Изобретение
Номер охранного документа: 0002516670
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.caa9

Валок стана винтовой прокатки

Изобретение предназначено для уменьшения себестоимости и повышения качества труб, производимых винтовой прокаткой. Валок содержит вал и закрепленную на нем бочку с коническими участками. Возможность многократной замены изнашиваемых участков валка обеспечивается за счет того, что бочка...
Тип: Изобретение
Номер охранного документа: 0002517647
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ce66

Устройство для вырезания участка обсадной колонны в скважине

Изобретение относится к области горной промышленности и может быть использовано для вырезания участка обсадной колонны в скважине. Устройство содержит корпус с пазами, шарнирно закрепленные в пазах корпуса выдвижные резцы, радиальные каналы, выполненные в корпусе в плоскости выдвижения резцов и...
Тип: Изобретение
Номер охранного документа: 0002518609
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ce71

Способ восстановления герметичности эксплуатационной колонны и ликвидации заколонных перетоков

Предложение относится к нефтегазодобывающей промышленности и предназначено для ремонтно-изоляционных работ в нефтяных и газовых скважинах при восстановлении герметичности эксплуатационной колонны и ликвидации заколонных перетоков. Технической задачей предложения является повышение...
Тип: Изобретение
Номер охранного документа: 0002518620
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d4ae

Способ герметизации эксплуатационной колонны скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации эксплуатационной колонны скважины. Способ герметизации эксплуатационной колонны скважины включает спуск в эксплуатационную колонну насосно-компрессорных труб (НКТ) и установку открытого конца НКТ на...
Тип: Изобретение
Номер охранного документа: 0002520217
Дата охранного документа: 20.06.2014
10.10.2014
№216.012.faa0

Способ герметизации эксплуатационной колонны

Изобретение относится к нефтедобывающей промышленности, в частности к способам производства ремонтно-изоляционных работ в скважине, и предназначено для герметизации эксплуатационной колонны. Способ герметизации эксплуатационной колонны включает спуск в скважину технологической колонны труб....
Тип: Изобретение
Номер охранного документа: 0002530006
Дата охранного документа: 10.10.2014
+ добавить свой РИД