×
20.05.2023
223.018.67af

Результат интеллектуальной деятельности: ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, предназначенным для литья деталей горячего тракта газотурбинных двигателей и установок, например соплового аппарата турбин, работающих в газовой среде при высоких напряжениях и температурах до 1000°С. Жаропрочный литейный сплав на никелевой основе содержит, мас.%: кобальт 9,0-11,0, хром 8,0-10,0, вольфрам 6,5-7,5, алюминий 4,5-5,5, тантал 3,0-5,0, титан 2,0-3,0, молибден 1,0-3,0, гафний 1,0-2,0, углерод 0,08-0,15, цирконий до 0,10, бор до 0,03, ниобий до 0,50, магний до 0,05, лантан до 0,05, иттрий до 0,05, по меньшей мере один элемент из группы: гадолиний и диспрозий до 0,05, при необходимости, эрбий до 0,05, никель - остальное. Обеспечиваются высокие показатели длительной прочности при температурах 900-1000°С с одновременным повышением стойкости к газовой коррозии, а также высокая структурная стабильность сплава на ресурс. 2 н.п. ф-лы, 2 табл., 8 пр.

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, предназначенным для литья деталей горячего тракта газотурбинных двигателей и установок, например, соплового аппарата турбин, работающих в газовой среде при высоких напряжениях и температурах до 1000°С.

Известен жаропрочный сплав на основе никеля следующего химического состава, масс. %:

кобальт 9,0-10,0
железо 0,25 максимум
хром 8,0-9,0
алюминий 4,75-5,50
титан 1,0-1,5
молибден 0-2,0
вольфрам 6,0-9,0
углерод 0,12-0,18
цирконий 0,01-0,03
бор 0,005-0,015
тантал 0,5-1,5
никель и случайные примеси остальное

(US 10533240 В2, 14.01.2020).

Сплав отличается пониженной жаропрочностью, структурной стабильностью в процессе эксплуатации и стойкостью к газовой коррозии при температурах 900-1000°С.

Известен жаропрочный сплав на основе никеля следующего химического состава, масс. %

хром 7,25-7,75
молибден 0,6-1,0
вольфрам 8,5-9,1
алюминий 6,0-6,4
титан 0,6-1,0
углерод 0,06-0,10
бор 0,01-0,02
гафний 0,4-0,6

по крайне мере один элемент из:

кобальт 8,6-9,6

и

тантал 4,0-4,8

или

кобальт 8,6-9,4
тантал 3,8-4,4

и

рений 0,4-0,6
никель и примеси остальное

(ЕР 3565914 А1, 13.11.2019).

Известен жаропрочный сплав на основе никеля следующего химического состава, масс. %

хром 9,5-10,0
кобальт 7,0-8,0
молибден 1,3-1,7
вольфрам 5,75-6,25
тантал 4,6-5,0
титан 3,4-3,6
алюминий 4,1-4,3
ниобий 0,4-0,6
гафний 0,1-0,2
углерод 0,05-0,07
бор 0,003-0,005
никель и случайные примеси остальное,

(US 5399313 А, 21.03.1995).

Известен жаропрочный сплав на основе никеля следующего химического состава, масс. %

хром 9,0
кобальт 10,0
вольфрам 7,0
молибден 2,0
алюминий 5,0
тантал 3,5
титан 2,5
углерод 0,1
бор 0,01
никель остальное

(Li-Kui Ning, Zhi Zheng, Feng-Quan An, Song Tang, Jian Tong, Hui-Si Ji, Hui-Wen Yu. Thermal fatique behavior of K125L superalloy, DOI 10.1007/s12598-014-0254-y, 23.05.2014, page 2).

Указанные сплавы имеют невысокие характеристики длительной прочности и пониженную стойкость к газовой коррозии при рабочих температурах.

Наиболее близким аналогом является жаропрочный сплав на основе никеля марки Rene 125, но с пониженным уровнем некоторых элементов (Zr, В, Р, S, Si и в меньшей степени Ti и Hf), предназначенный для изготовления некоторых сложных деталей, например лопаток авиационных газотурбинных двигателей, содержащий, масс. %:

кобальт 9,50-9,90
хром 8,70-9,00
вольфрам 6,65-7,05
тантал 3,67-3,87
углерод 0,10-0,12
молибден 1,77-1,97
алюминий 4,80-5,00
гафний 1,48-1,52
титан 2,28-2,33
бор 0,005-0,01
цирконий до 0,007
никель остальное,

при этом сплав может содержать

фосфор 0-0,001
сера 0-0,001
никеля ≥59,83
суммарное содержание титана,
гафния и алюминия до 8,77

(FR 2980485 В1, 04.07.2014).

Сплав, взятый за прототип, имеет умеренные характеристики длительной прочности, стойкости к газовой коррозии, а также пониженную структурную стабильность в процессе эксплуатации при рабочих температурах 900-1000°С.

Таким образом, известные сплавы при рабочих температурах 900-1000°С не обладают оптимальным сочетанием служебных свойств (длительная прочность, стойкость к высокотемпературной газовой коррозии, структурная стабильность в процессе эксплуатации).

Задачей предложенного изобретения является разработка жаропрочного литейного сплава на основе никеля с повышенным сочетанием служебных свойств.

Техническим результатом предложенного изобретения является повышение длительной прочности и структурной стабильности сплава на ресурс при температурах 900-1000°С с одновременным повышением стойкости к высокотемпературной газовой коррозии (жаростойкости).

Для достижения технического результата предложен жаропрочный литейный сплав на никелевой основе, содержащий кобальт, хром, вольфрам, алюминий, тантал, титан, молибден, гафний, углерод, цирконий, бор, при этом он дополнительно содержит ниобий, магний, лантан, иттрий, по меньшей мере один элемент из группы: гадолиний и диспрозий, при следующем соотношении компонентов, масс. %:

кобальт 9,0-11,0
хром 8,0-10,0
вольфрам 6,5-7,5
алюминий 4,5-5,5
тантал 3,0-5,0
титан 2,0-3,0
молибден 1,0-3,0
гафний 1,0-2,0
углерод 0,08-0,15
цирконий до 0,10
бор до 0,03
ниобий до 0,50
магний до 0,05
лантан до 0,05
иттрий до 0,05

по меньшей мере один элемент из группы:

гадолиний и диспрозий до 0,05
никель остальное.

Сплав может дополнительно содержать до 0,05 масс. % эрбия.

Также предложено изделие, выполненное из данного сплава.

По сравнению со сплавом - прототипом в предлагаемом сплаве содержатся строго регламентированные количества микролегирующих элементов ниобия, магния, лантана, иттрия и по меньшей мере одного элемента из группы: гадолиний и диспрозий.

Было установлено, что введение в сплав редкоземельных металлов (РЗМ) лантана, иттрия и по меньшей мере одного элемента из группы: гадолиний и диспрозий, в заданных количествах позволяет повысить сопротивление сплава к высокотемпературной газовой коррозии (жаростойкости). Указанные добавки создают защитный барьерный слой на поверхности металла за счет их окисления и тем самым тормозят диффузионные потоки ионов кислорода с поверхности вглубь металла. Кроме того, указанные РЗМ способствуют выделению ультрадисперсных наночастиц γ'-фазы размером до 100 нм из γ-твердого раствора. Наночастицы препятствуют перемещению дислокаций в процессе высокотемпературной ползучести, тем самым обеспечивая повышение жаропрочности.

Было установлено, что введение в расплав магния перед присадкой РЗМ позволяет повысить и стабилизировать степень усвоения этих элементов.

Присутствие в сплаве строго ограниченного содержания ниобия позволяет повысить температуру полного растворения γ'-фазы, тем самым обеспечивая дополнительное повышение жаропрочности. При повышенном содержании ниобия в структуре сплава при эксплуатации выделяются топологически плотноупакованные (ТПУ) фазы, которые понижают длительную прочность.

Сбалансированное сочетание легирующих элементов с одновременным введением в сплав РЗМ (лантана, иттрия и по меньшей мере одного элемента из группы: гадолиний и диспрозий) позволяет повысить структурную стабильность сплава на ресурс за счет замедления диффузионных процессов при высокотемпературной ползучести и исключения появления в процессе эксплуатации охрупчивающих ТПУ фаз.

Было установлено, что при введении в сплав до 0,05 масс. % эрбия обеспечивается дополнительное повышение длительной прочности за счет выделения из γ-твердого раствора ультрадисперсных наночастиц γ'-фазы размером до 50 нм, которые создают дополнительное препятствие при перемещении дислокаций в процессе высокотемпературной ползучести. Кроме того, при введении эрбия укрепляется защитный барьерный слой на поверхности металла и тем самым обеспечивается повышение стойкости сплава к газовой коррозии.

Предлагаемый сплав может быть использован для получения деталей с поликристаллической равноосной или направленной структурой.

Пример осуществления.

В вакуумной индукционной печи VIM-12 были проведены восемь плавок предлагаемого сплава и одна плавка сплава, взятого за прототип. Масса каждой плавки составляла 13 кг. Все плавки были переплавлены в вакуумной плавильно-разливочной установке УППФ-У и отлиты в блоки с заготовками под образцы с поликристаллической равноосной структурой.

После проведения термической обработки из заготовок были изготовлены образцы для испытаний на длительную прочность при высоких температурах и испытаний на высокотемпературную газовую коррозию (жаростойкость).

Составы образцов сплавов приведены в таблице 1.

Испытания на длительную прочность проводили по ГОСТ 10145-81 при температуре 900°С и напряжениях 330, 240 на базе 100-1000 часов, а также при температуре 1000°С и напряжении 90 МПа на базе 500-2000 часов. От каждой плавки было испытано по два образца.

Испытания на высокотемпературную газовую коррозию проводили по ГОСТ 6130-71 при температуре 1000°С. Один цикл испытаний включал:

- загрузку образцов в горячую печь на воздухе;

- выдержку образцов в течение 20 часов в печи;

- извлечение образцов и взвешивание.

Общая продолжительность испытаний - 5 циклов (100 часов).

Оценку стойкости образцов к высокотемпературной газовой коррозии (жаростойкости) проводили по удельному изменению (убыли) массы.

Испытания проводили над 5-ю образцами, после чего высчитывали усредненное значение их жаростойкости (газовой коррозии).

Результаты испытаний на длительную прочность и жаростойкость (высокотемпературная газовая коррозия) образцов сплава приведены в таблице 2.

Полученные результаты показывают, что время до разрушения предлагаемого сплава при испытаниях на длительную прочность при всех режимах превосходит время до разрушения сплава - прототипа, т.е. предлагаемый сплав обладает более высоким уровнем жаропрочности.

Значение изменения массы образцов за 100 ч испытаний на жаростойкость при температуре 1000°С у предлагаемого сплава (без эрбия): приблизительно на 70-90% ниже, чем у сплава-прототипа, т.е. стойкость к газовой коррозии предлагаемого сплава превосходит сплава-прототипа.

Введение в сплав эрбия позволило дополнительно повысить долговечность сплава при Т=900°С и напряжении 330 МПа с 121-142 ч до 148-171 ч, при Т=900 и напряжении 240 МПа с 955-1030 ч до 1189-1255 ч, при Т=1000°С и напряжении 90 МПа с 1101-1352 ч до 1689-1854 ч. Кроме того, повышается стойкость сплава к газовой коррозии: скорость коррозии (жаростойкость) понижается с 0,0395-0,0442 до 0,0312-0,0333 г/м2⋅ч.

Металлографический анализ структуры разрушенных образцов после испытаний на длительную прочность при температурах 900 и 1000°С и напряжениях 240 и 90 МПа соответственно на базах 1000-2000 часов (табл. 2) не выявил образования охрупчивающих ТПУ-фаз (σ, μ и др.), что подтверждает высокую фазовую и структурную стабильность предлагаемого сплава.

Таким образом, предлагаемый сплав существенно превосходит сплав-прототип по жаропрочности и стойкости к высокотемпературной газовой коррозии (жаростойкости), обладает фазовой стабильностью, что позволяет повысить ресурс работы и надежность авиационных газотурбинных двигателей, длительно работающих в газовой (атмосферной) среде при повышенных температурах и напряжениях.

Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
12.04.2023
№223.018.426b

Теплостойкий плёночный клей

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой. Полимерная основа представляет собой имидообразующую смесь, включающую по меньшей мере один диалкоксиэфир тетракарбоновой...
Тип: Изобретение
Номер охранного документа: 0002760127
Дата охранного документа: 22.11.2021
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
21.05.2023
№223.018.695c

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 750°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002794497
Дата охранного документа: 19.04.2023
21.05.2023
№223.018.695e

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 750°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002794497
Дата охранного документа: 19.04.2023
Показаны записи 41-50 из 70.
19.07.2018
№218.016.7220

Сплав на основе алюминия

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, используемым для получения порошков, применяющихся для получения деталей с использованием аддитивных технологий. Сплав на основе алюминия содержит, мас. %: кремний 8,5-11,5, магний 0,3-1,0, медь 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002661525
Дата охранного документа: 17.07.2018
19.07.2018
№218.016.7221

Способ получения изделий из жаропрочных никелевых сплавов

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности в качестве метода получения заготовок дисков газотурбинных двигателей (ГТД). Способ получения изделия...
Тип: Изобретение
Номер охранного документа: 0002661524
Дата охранного документа: 17.07.2018
15.11.2018
№218.016.9d83

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, работающих в агрессивных средах до 750-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,15; хром 13-17;...
Тип: Изобретение
Номер охранного документа: 0002672463
Дата охранного документа: 14.11.2018
23.11.2018
№218.016.9ff7

Алюминиевый сплав системы al-mg-si

Изобретение относится к сплавам на основе алюминия для алюминиевых листов и профилей и может быть использовано при изготовлении боковых панелей фюзеляжа, в том числе применяемых в изделиях авиационной техники военного назначения. Сплав на основе алюминия содержит, мас. %: медь 1,6-1,9, магний...
Тип: Изобретение
Номер охранного документа: 0002672977
Дата охранного документа: 21.11.2018
07.12.2018
№218.016.a4df

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к литейным коррозионно-стойким жаропрочным сплавам на основе никеля, предназначенным для литья деталей горячего тракта газотурбинных двигателей и установок с монокристаллической структурой, длительно работающих в агрессивных средах при температурах...
Тип: Изобретение
Номер охранного документа: 0002674274
Дата охранного документа: 06.12.2018
10.01.2019
№219.016.ae2f

Огнестойкий слоистый металлостеклопластик и изделие, выполненное из него

Изобретение относится к области слоистых алюмополимерных композиционных материалов. Предложен слоистый металлостеклопластик, содержащий по меньшей мере один слой стеклопластика на базе термореактивного клеевого связующего с армирующим наполнителем из стекловолокон и чередующиеся с ним листы...
Тип: Изобретение
Номер охранного документа: 0002676637
Дата охранного документа: 09.01.2019
21.02.2019
№219.016.c52d

Способ получения мелкодисперсных металлических порошков из сплавов на основе тугоплавких металлов

Изобретение относится к получению мелкодисперсных металлических порошков из сплавов на основе тугоплавких металлов. Заготовку в виде стержня, состоящего из конусной и цилиндрической частей, устанавливают в камеру загрузки. Камеру загрузки, плавильную камеру, камеры распыления и системы сбора...
Тип: Изобретение
Номер охранного документа: 0002680322
Дата охранного документа: 19.02.2019
20.03.2019
№219.016.e305

Способ производства жаропрочных сплавов на основе никеля (варианты)

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при изготовлении лопаток, дисков, створок и других деталей газотурбинных двигателей. Способ производства жаропрочных сплавов на основе никеля включает...
Тип: Изобретение
Номер охранного документа: 0002682266
Дата охранного документа: 18.03.2019
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
+ добавить свой РИД